IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.02318.html
   My bibliography  Save this paper

On the Size Control of the Hybrid Test for Predictive Ability

Author

Listed:
  • Deborah Kim

Abstract

We analyze theoretical properties of the hybrid test for superior predictability. We demonstrate with a simple example that the test may not be pointwise asymptotically of level $\alpha$ at commonly used significance levels and may lead to rejection rates over $11\%$ when the significance level $\alpha$ is $5\%$. Generalizing this observation, we provide a formal result that pointwise asymptotic invalidity of the hybrid test persists in a setting under reasonable conditions. As an easy alternative, we propose a modified hybrid test based on the generalized moment selection method and show that the modified test enjoys pointwise asymptotic validity. Monte Carlo simulations support the theoretical findings.

Suggested Citation

  • Deborah Kim, 2020. "On the Size Control of the Hybrid Test for Predictive Ability," Papers 2008.02318, arXiv.org, revised Sep 2021.
  • Handle: RePEc:arx:papers:2008.02318
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.02318
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    4. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    5. repec:taf:jnlbes:v:30:y:2012:i:2:p:288-296 is not listed on IDEAS
    6. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    7. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    2. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    3. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    4. Yen, Yu-Min & Yen, Tso-Jung, 2021. "Testing forecast accuracy of expectiles and quantiles with the extremal consistent loss functions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 733-758.
    5. Arvanitis, Stelios & Post, Thierry & Potì, Valerio & Karabati, Selcuk, 2021. "Nonparametric tests for Optimal Predictive Ability," International Journal of Forecasting, Elsevier, vol. 37(2), pages 881-898.
    6. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    7. Timmermann, Allan & Qu, Ritong & Zhu, Yinchu, 2019. "Do Any Economists Have Superior Forecasting Skills?," CEPR Discussion Papers 14112, C.E.P.R. Discussion Papers.
    8. Kyungchul Song, 2011. "Testing Predictive Ability and Power Robustification," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 288-296, October.
    9. Kyungchul Song, 2009. "Testing Predictive Ability and Power Robustification," PIER Working Paper Archive 09-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    10. Köchling, Gerrit & Schmidtke, Philipp & Posch, Peter N., 2020. "Volatility forecasting accuracy for Bitcoin," Economics Letters, Elsevier, vol. 191(C).
    11. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.
    12. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    13. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
    14. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    15. D'Amuri, Francesco & Marcucci, Juri, 2009. "‘Google it!’ Forecasting the US unemployment rate with a Google job search index," ISER Working Paper Series 2009-32, Institute for Social and Economic Research.
    16. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    17. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    18. Gospodinov, Nikolay & Kan, Raymond & Robotti, Cesare, 2013. "Chi-squared tests for evaluation and comparison of asset pricing models," Journal of Econometrics, Elsevier, vol. 173(1), pages 108-125.
    19. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    20. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.02318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.