IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.03481.html
   My bibliography  Save this paper

Necessary and Sufficient Conditions for Inverse Reinforcement Learning of Bayesian Stopping Time Problems

Author

Listed:
  • Kunal Pattanayak
  • Vikram Krishnamurthy

Abstract

This paper presents an inverse reinforcement learning~(IRL) framework for Bayesian stopping time problems. By observing the actions of a Bayesian decision maker, we provide a necessary and sufficient condition to identify if these actions are consistent with optimizing a cost function. In a Bayesian (partially observed) setting, the inverse learner can at best identify optimality wrt the observed strategies. Our IRL algorithm identifies optimality and then constructs set-valued estimates of the cost function.To achieve this IRL objective, we use novel ideas from Bayesian revealed preferences stemming from microeconomics. We illustrate the proposed IRL scheme using two important examples of stopping time problems, namely, sequential hypothesis testing and Bayesian search. As a real-world example, we illustrate using a YouTube dataset comprising metadata from 190000 videos how the proposed IRL method predicts user engagement in online multimedia platforms with high accuracy. Finally, for finite datasets, we propose an IRL detection algorithm and give finite sample bounds on its error probabilities.

Suggested Citation

  • Kunal Pattanayak & Vikram Krishnamurthy, 2020. "Necessary and Sufficient Conditions for Inverse Reinforcement Learning of Bayesian Stopping Time Problems," Papers 2007.03481, arXiv.org, revised Mar 2023.
  • Handle: RePEc:arx:papers:2007.03481
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.03481
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Caplin & Daniel Martin, 2015. "A Testable Theory of Imperfect Perception," Economic Journal, Royal Economic Society, vol. 125(582), pages 184-202, February.
    2. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    3. Andrew Caplin & Mark Dean, 2015. "Revealed Preference, Rational Inattention, and Costly Information Acquisition," American Economic Review, American Economic Association, vol. 105(7), pages 2183-2203, July.
    4. Emir Kamenica & Matthew Gentzkow, 2011. "Bayesian Persuasion," American Economic Review, American Economic Association, vol. 101(6), pages 2590-2615, October.
    5. Filip Matêjka & Alisdair McKay, 2015. "Rational Inattention to Discrete Choices: A New Foundation for the Multinomial Logit Model," American Economic Review, American Economic Association, vol. 105(1), pages 272-298, January.
    6. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    7. repec:hal:pseose:halshs-01155313 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunal Pattanayak & Vikram Krishnamurthy, 2021. "Unifying Revealed Preference and Revealed Rational Inattention," Papers 2106.14486, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rehbeck, John, 2023. "Revealed Bayesian expected utility with limited data," Journal of Economic Behavior & Organization, Elsevier, vol. 207(C), pages 81-95.
    2. Brocas, Isabelle & Carrillo, Juan D., 2021. "Value computation and modulation: A neuroeconomic theory of self-control as constrained optimization," Journal of Economic Theory, Elsevier, vol. 198(C).
    3. Bartosz Maćkowiak & Filip Matějka & Mirko Wiederholt, 2023. "Rational Inattention: A Review," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 226-273, March.
    4. Roc Armenter & Michèle Müller-Itten & Zachary Stangebye, 2020. "Rational Inattention via Ignorance Equivalence," Working Papers 20-24, Federal Reserve Bank of Philadelphia.
    5. Cristina Gualdani & Shruti Sinha, 2019. "Identification in discrete choice models with imperfect information," Papers 1911.04529, arXiv.org, revised Dec 2023.
    6. Caplin, Andrew, 2014. "Rational inattention and revealed preference: The data-theoretic approach to economic modeling," Research in Economics, Elsevier, vol. 68(4), pages 295-305.
    7. Andrew Caplin & Mark Dean & John Leahy, 2022. "Rationally Inattentive Behavior: Characterizing and Generalizing Shannon Entropy," Journal of Political Economy, University of Chicago Press, vol. 130(6), pages 1676-1715.
    8. Mensch, Jeffrey, 2021. "Rational inattention and the monotone likelihood ratio property," Journal of Economic Theory, Elsevier, vol. 196(C).
    9. Chambers, Christopher P. & Liu, Ce & Rehbeck, John, 2020. "Costly information acquisition," Journal of Economic Theory, Elsevier, vol. 186(C).
    10. Spyros Galanis & Sergei Mikhalishchev, 2024. "Information Aggregation with Costly Information Acquisition," Papers 2406.07186, arXiv.org.
    11. Flynn, Joel P. & Sastry, Karthik A., 2023. "Strategic mistakes," Journal of Economic Theory, Elsevier, vol. 212(C).
    12. Li, Anqi & Hu, Lin, 2023. "Electoral accountability and selection with personalized information aggregation," Games and Economic Behavior, Elsevier, vol. 140(C), pages 296-315.
    13. Tsakas, Elias, 2018. "Robust scoring rules," Research Memorandum 023, Maastricht University, Graduate School of Business and Economics (GSBE).
    14. Andrew Caplin & Dániel CsabaQuantCo & John Leahy & Oded Nov, 2020. "Rational Inattention, Competitive Supply, and Psychometrics," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(3), pages 1681-1724.
    15. Tsakas, Elias, 2020. "Robust scoring rules," Theoretical Economics, Econometric Society, vol. 15(3), July.
    16. Matějka, Filip & Mackowiak, Bartosz & Wiederholt, Mirko, 2018. "Survey: Rational Inattention, a Disciplined Behavioral Model," CEPR Discussion Papers 13243, C.E.P.R. Discussion Papers.
    17. Dertwinkel-Kalt, Markus & Ebert, Sebastian & Köster, Mats, 2023. "On correlated lotteries in economic applications," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 292-306.
    18. Martin, Daniel & Muñoz-Rodriguez, Edwin, 2022. "Cognitive costs and misperceived incentives: Evidence from the BDM mechanism," European Economic Review, Elsevier, vol. 148(C).
    19. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    20. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.03481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.