IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2007.01414.html
   My bibliography  Save this paper

Minkowski gauges and deviation measures

Author

Listed:
  • Marlon Moresco
  • Marcelo Righi
  • Eduardo Horta

Abstract

We propose to derive deviation measures through the Minkowski gauge of a given set of acceptable positions. We show that, given a suitable acceptance set, any positive homogeneous deviation measure can be accommodated in our framework. In doing so, we provide a new interpretation for such measures, namely, that they quantify how much one must shrink or deleverage a position for it to become acceptable. In particular, the Minkowski Deviation of a set which is convex, stable under scalar addition, and radially bounded at non-constants, is a generalized deviation measure. Furthermore, we explore the relations existing between mathematical and financial properties attributable to an acceptance set, and the corresponding properties of the induced measure. Hence, we fill the gap that is the lack of an acceptance set for deviation measures. Dual characterizations in terms of polar sets and support functionals are provided.

Suggested Citation

  • Marlon Moresco & Marcelo Righi & Eduardo Horta, 2020. "Minkowski gauges and deviation measures," Papers 2007.01414, arXiv.org, revised Jul 2021.
  • Handle: RePEc:arx:papers:2007.01414
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2007.01414
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Liebrich, Felix-Benedikt & Svindland, Gregor, 2017. "Model spaces for risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 150-165.
    4. Mohammed Berkhouch & Ghizlane Lakhnati & Marcelo Brutti Righi, 2018. "Extended Gini-Type Measures of Risk and Variability," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(3), pages 295-314, May.
    5. Keita Owari, 2013. "Maximum Lebesgue Extension of Monotone Convex Functions," CARF F-Series CARF-F-315, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    6. Felix-Benedikt Liebrich & Gregor Svindland, 2017. "Model Spaces for Risk Measures," Papers 1703.01137, arXiv.org, revised Nov 2017.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    9. repec:dau:papers:123456789/361 is not listed on IDEAS
    10. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    11. Marcelo Brutti Righi, 2017. "Closed spaces induced by deviation measures," Economics Bulletin, AccessEcon, vol. 37(3), pages 1781-1784.
    12. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, Michael, 2006. "Master funds in portfolio analysis with general deviation measures," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 743-778, February.
    13. E. Jouini & W. Schachermayer & N. Touzi, 2008. "Optimal Risk Sharing For Law Invariant Monetary Utility Functions," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 269-292, April.
    14. Samuel Drapeau & Michael Kupper, 2013. "Risk Preferences and Their Robust Representation," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 28-62, February.
    15. Bogdan Grechuk & Anton Molyboha & Michael Zabarankin, 2009. "Maximum Entropy Principle with General Deviation Measures," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 445-467, May.
    16. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    17. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    18. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, April.
    19. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, December.
    20. Georg Ch Pflug & Werner Römisch, 2007. "Modeling, Measuring and Managing Risk," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6478, December.
    21. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    22. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    23. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2024. "Inf-convolution and optimal risk sharing with countable sets of risk measures," Annals of Operations Research, Springer, vol. 336(1), pages 829-860, May.
    2. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    3. Mitja Stadje, 2018. "Representation Results for Law Invariant Recursive Dynamic Deviation Measures and Risk Sharing," Papers 1811.09615, arXiv.org, revised Dec 2018.
    4. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    5. Mohammed Berkhouch & Fernanda Maria Müller & Ghizlane Lakhnati & Marcelo Brutti Righi, 2022. "Deviation-Based Model Risk Measures," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 527-547, February.
    6. Marcelo Brutti Righi & Marlon Ruoso Moresco, 2022. "Star-Shaped deviations," Papers 2207.08613, arXiv.org.
    7. Felix-Benedikt Liebrich & Gregor Svindland, 2018. "Risk sharing for capital requirements with multidimensional security markets," Papers 1809.10015, arXiv.org.
    8. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    9. Fracasso, Laís Martins & Müller, Fernanda Maria & Ramos, Henrique Pinto & Righi, Marcelo Brutti, 2023. "Is there a risk premium? Evidence from thirteen measures," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 182-199.
    10. Righi, Marcelo Brutti, 2024. "Star-shaped acceptability indexes," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 170-181.
    11. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    12. Xia Han & Qiuqi Wang & Ruodu Wang & Jianming Xia, 2021. "Cash-subadditive risk measures without quasi-convexity," Papers 2110.12198, arXiv.org, revised May 2024.
    13. Zou, Zhenfeng & Wu, Qinyu & Xia, Zichao & Hu, Taizhong, 2023. "Adjusted Rényi entropic Value-at-Risk," European Journal of Operational Research, Elsevier, vol. 306(1), pages 255-268.
    14. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    15. Zou, Zhenfeng & Hu, Taizhong, 2024. "Adjusted higher-order expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 1-12.
    16. Pablo Cristini Guedes & Fernanda Maria Müller & Marcelo Brutti Righi, 2023. "Risk measures-based cluster methods for finance," Risk Management, Palgrave Macmillan, vol. 25(1), pages 1-56, March.
    17. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
    18. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    19. Felix-Benedikt Liebrich & Gregor Svindland, 2019. "Risk sharing for capital requirements with multidimensional security markets," Finance and Stochastics, Springer, vol. 23(4), pages 925-973, October.
    20. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2007.01414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.