IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.10603.html
   My bibliography  Save this paper

Detecting and explaining changes in various assets' relationships in financial markets

Author

Listed:
  • Makoto Naraoka
  • Teruaki Hayashi
  • Takaaki Yoshino
  • Toshiaki Sugie
  • Kota Takano
  • Yukio Ohsawa

Abstract

We study the method for detecting relationship changes in financial markets and providing human-interpretable network visualization to support the decision-making of fund managers dealing with multi-assets. First, we construct co-occurrence networks with each asset as a node and a pair with a strong relationship in price change as an edge at each time step. Second, we calculate Graph-Based Entropy to represent the variety of price changes based on the network. Third, we apply the Differential Network to finance, which is traditionally used in the field of bioinformatics. By the method described above, we can visualize when and what kind of changes are occurring in the financial market, and which assets play a central role in changes in financial markets. Experiments with multi-asset time-series data showed results that were well fit with actual events while maintaining high interpretability. It is suggested that this approach is useful for fund managers to use as a new option for decision making.

Suggested Citation

  • Makoto Naraoka & Teruaki Hayashi & Takaaki Yoshino & Toshiaki Sugie & Kota Takano & Yukio Ohsawa, 2020. "Detecting and explaining changes in various assets' relationships in financial markets," Papers 2005.10603, arXiv.org, revised Nov 2020.
  • Handle: RePEc:arx:papers:2005.10603
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.10603
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yukio Ohsawa, 2018. "Graph-Based Entropy for Detecting Explanatory Signs of Changes in Market," The Review of Socionetwork Strategies, Springer, vol. 12(2), pages 183-203, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Sun & Teruaki Hayashi & Yukio Ohsawa, 2021. "A Latent Topic Analysis and Visualization Framework for Category-Level Target Promotion in the Supermarket," The Review of Socionetwork Strategies, Springer, vol. 15(2), pages 429-453, November.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.10603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.