IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.08124.html
   My bibliography  Save this paper

Minimizing the Ruin Probability under the Sparre Andersen Model

Author

Listed:
  • Linlin Tian
  • Lihua Bai

Abstract

In this paper, we consider the problem of minimizing the ruin probability of an insurance company in which the surplus process follows the Sparre Andersen model. Similar to Bai et al. \cite{bai2017optimal}, we recast this problem in a Markovian framework by adding another dimension representing the time elapsed since the last claim. After Markovization, We investigate the regularity properties of the value function and state the dynamic programming principle. Furthermore, we show that the value function is the unique constrained viscosity solution to the associated Hamilton-Jacobi-Bellman equation. It should be noted that there is no discount factor in our paper, which makes it tricky to prove the uniqueness. To overcome this difficulty, we construct the strict viscosity supersolution. Then instead of comparing the usual viscosity supersolution and subsolution, we compare the supersolution and the strict subsolution. Eventually we show that all viscosity subsolution is less than the supersolution.

Suggested Citation

  • Linlin Tian & Lihua Bai, 2020. "Minimizing the Ruin Probability under the Sparre Andersen Model," Papers 2004.08124, arXiv.org.
  • Handle: RePEc:arx:papers:2004.08124
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.08124
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    2. Liang, Xiaoqing & Young, Virginia R., 2018. "Minimizing the probability of ruin: Optimal per-loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 181-190.
    3. Meng, Hui & Zhang, Xin, 2010. "Optimal Risk Control for The Excess of Loss Reinsurance Policies," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 179-197, May.
    4. Kristin Reikvam & Fred Espen Benth & Kenneth Hvistendahl Karlsen, 2001. "Optimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach," Finance and Stochastics, Springer, vol. 5(3), pages 275-303.
    5. Pablo Azcue & Nora Muler, 2005. "Optimal Reinsurance And Dividend Distribution Policies In The Cramér‐Lundberg Model," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 261-308, April.
    6. Lesław Gajek & Dariusz Zagrodny, 2004. "Reinsurance Arrangements Maximizing Insurer's Survival Probability," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(3), pages 421-435, September.
    7. Hipp, Christian & Plum, Michael, 2000. "Optimal investment for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 215-228, October.
    8. Li, Danping & Young, Virginia R., 2019. "Optimal reinsurance to minimize the discounted probability of ruin under ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 143-152.
    9. Hipp, Christian & Taksar, Michael, 2010. "Optimal non-proportional reinsurance control," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 246-254, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xiaoqing & Young, Virginia R., 2018. "Minimizing the probability of ruin: Optimal per-loss reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 181-190.
    2. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    3. Meng, Hui & Liao, Pu & Siu, Tak Kuen, 2019. "Continuous-time optimal reinsurance strategy with nontrivial curved structures," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    4. Bohan Li & Junyi Guo, 2021. "Optimal Investment and Reinsurance Under the Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 893-923, September.
    5. Meng, Hui & Wei, Li & Zhou, Ming, 2023. "Multiple per-claim reinsurance based on maximizing the Lundberg exponent," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 33-47.
    6. Jang, Bong-Gyu & Kim, Kyeong Tae, 2015. "Optimal reinsurance and asset allocation under regime switching," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 37-47.
    7. Meng, Hui & Zhou, Ming & Siu, Tak Kuen, 2016. "Optimal reinsurance policies with two reinsurers in continuous time," Economic Modelling, Elsevier, vol. 59(C), pages 182-195.
    8. Pablo Azcue & Nora Muler, 2013. "Minimizing the ruin probability allowing investments in two assets: a two-dimensional problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 177-206, April.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Andrea Barth & Santiago Moreno–Bromberg & Oleg Reichmann, 2016. "A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate Setting," Computational Economics, Springer;Society for Computational Economics, vol. 47(3), pages 447-472, March.
    11. Wujun Lv & Linlin Tian & Xiaoyi Zhang, 2023. "Optimal Defined Contribution Pension Management with Jump Diffusions and Common Shock Dependence," Mathematics, MDPI, vol. 11(13), pages 1-20, July.
    12. Pablo Azcue & Nora Muler & Zbigniew Palmowski, 2016. "Optimal dividend payments for a two-dimensional insurance risk process," Papers 1603.07019, arXiv.org, revised Apr 2018.
    13. Albrecher, Hansjörg & Thonhauser, Stefan, 2008. "Optimal dividend strategies for a risk process under force of interest," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 134-149, August.
    14. Arian Cani & Stefan Thonhauser, 2017. "An optimal reinsurance problem in the Cramér–Lundberg model," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 179-205, April.
    15. Thonhauser, Stefan & Albrecher, Hansjorg, 2007. "Dividend maximization under consideration of the time value of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 163-184, July.
    16. Preischl, M. & Thonhauser, S., 2019. "Optimal reinsurance for Gerber–Shiu functions in the Cramér–Lundberg model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 82-91.
    17. Zhou, Ming & Yuen, Kam C., 2012. "Optimal reinsurance and dividend for a diffusion model with capital injection: Variance premium principle," Economic Modelling, Elsevier, vol. 29(2), pages 198-207.
    18. Michael Preischl & Stefan Thonhauser, 2018. "Optimal Reinsurance for Gerber-Shiu Functions in the Cramer-Lundberg Model," Papers 1809.00990, arXiv.org.
    19. Jiaqin Wei & Hailiang Yang & Rongming Wang, 2010. "Classical and Impulse Control for the Optimization of Dividend and Proportional Reinsurance Policies with Regime Switching," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 358-377, November.
    20. Zhu, Jinxia & Chen, Feng, 2015. "Dividend optimization under reserve constraints for the Cramér–Lundberg model compounded by force of interest," Economic Modelling, Elsevier, vol. 46(C), pages 142-156.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.08124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.