IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.06642.html
   My bibliography  Save this paper

Information Token Driven Machine Learning for Electronic Markets: Performance Effects in Behavioral Financial Big Data Analytics

Author

Listed:
  • Jim Samuel

Abstract

Conjunct with the universal acceleration in information growth, financial services have been immersed in an evolution of information dynamics. It is not just the dramatic increase in volumes of data, but the speed, the complexity and the unpredictability of big-data phenomena that have compounded the challenges faced by researchers and practitioners in financial services. Math, statistics and technology have been leveraged creatively to create analytical solutions. Given the many unique characteristics of financial bid data (FBD) it is necessary to gain insights into strategies and models that can be used to create FBD specific solutions. Behavioral finance data, a subset of FBD, is seeing exponential growth and this presents an unprecedented opportunity to study behavioral finance employing big data analytics methodologies. The present study maps machine learning (ML) techniques and behavioral finance categories to explore the potential for using ML techniques to address behavioral aspects in FBD. The ontological feasibility of such an approach is presented and the primary purpose of this study is propositioned- ML based behavioral models can effectively estimate performance in FBD. A simple machine learning algorithm is successfully employed to study behavioral performance in an artificial stock market to validate the propositions. Keywords: Information; Big Data; Electronic Markets; Analytics; Behavior

Suggested Citation

  • Jim Samuel, 2020. "Information Token Driven Machine Learning for Electronic Markets: Performance Effects in Behavioral Financial Big Data Analytics," Papers 2004.06642, arXiv.org.
  • Handle: RePEc:arx:papers:2004.06642
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.06642
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Georg Meyer & Gediminas Adomavicius & Paul E. Johnson & Mohamed Elidrisi & William A. Rush & JoAnn M. Sperl-Hillen & Patrick J. O'Connor, 2014. "A Machine Learning Approach to Improving Dynamic Decision Making," Information Systems Research, INFORMS, vol. 25(2), pages 239-263, June.
    2. Marco Cipriani & Antonio Guarino, 2005. "Herd Behavior in a Laboratory Financial Market," American Economic Review, American Economic Association, vol. 95(5), pages 1427-1443, December.
    3. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    4. Alan R. Dennis & Susan T. Kinney, 1998. "Testing Media Richness Theory in the New Media: The Effects of Cues, Feedback, and Task Equivocality," Information Systems Research, INFORMS, vol. 9(3), pages 256-274, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Drehmann & Jörg Oechssler & Andreas Roider, 2005. "Herding and Contrarian Behavior in Financial Markets: An Internet Experiment," American Economic Review, American Economic Association, vol. 95(5), pages 1403-1426, December.
    2. Saadaoui Mallek, Ray & Albaity, Mohamed & Molyneux, Philip, 2022. "Herding behaviour heterogeneity under economic and political risks: Evidence from GCC," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 345-361.
    3. R. Andergassen, 2003. "Rational destabilising speculation and the riding of bubbles," Working Papers 475, Dipartimento Scienze Economiche, Universita' di Bologna.
    4. Anne Lavigne, 2006. "Gouvernance et investissement des fonds de pension privés aux Etats-Unis," Working Papers halshs-00081401, HAL.
    5. Dash, Saumya Ranjan & Maitra, Debasish, 2018. "Does sentiment matter for stock returns? Evidence from Indian stock market using wavelet approach," Finance Research Letters, Elsevier, vol. 26(C), pages 32-39.
    6. Florian Meier, 2020. "The Age of Cheap Money and Passive Investing: Are Pro Forma Earnings Value Relevant?," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 9(2), pages 1-1.
    7. Glaser, Markus, 2003. "Online Broker Investors: Demographic Information, Investment Strategy, Portfolio Positions, and Trading Activity," Sonderforschungsbereich 504 Publications 03-18, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    8. Philip A. Stork, 2011. "The intertemporal mechanics of European stock price momentum," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 28(3), pages 217-232, August.
    9. Marco Cipriani & Antonio Guarino, 2009. "Herd Behavior in Financial Markets: An Experiment with Financial Market Professionals," Journal of the European Economic Association, MIT Press, vol. 7(1), pages 206-233, March.
    10. Angrisani Marco & Guarino Antonio & Huck Steffen & Larson Nathan C, 2011. "No-Trade in the Laboratory," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-58, April.
    11. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    13. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    14. Stijn Claessens & M. Ayhan Kose, 2013. "Financial Crises: Explanations, Types and Implications," CAMA Working Papers 2013-06, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Raphaëlle Bellando & Sébastien Ringuedé, 2007. "Compétition entre fonds et prise de risque excessive : une application empirique au cas des OPCVM actions de droit français," Post-Print halshs-00226341, HAL.
    16. Luisa Corrado & Marcus Miller & Lei Zhang, 2007. "Bulls, bears and excess volatility: can currency intervention help?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(2), pages 261-272.
    17. Laureti, Carolina & Szafarz, Ariane, 2023. "Banking regulation and costless commitment contracts for time-inconsistent agents," Economic Modelling, Elsevier, vol. 129(C).
    18. Wang, Peiwen & Chen, Minghua & Wu, Ji & Yan, Yuanyun, 2023. "Do peer effects matter in bank risk? Some cross-country evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    19. Hamza Bahaji, 2011. "Incentives from stock option grants: a behavioral approach," Post-Print halshs-00681607, HAL.
    20. Siliang Tong & Nan Jia & Xueming Luo & Zheng Fang, 2021. "The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance," Strategic Management Journal, Wiley Blackwell, vol. 42(9), pages 1600-1631, September.

    More about this item

    Keywords

    information; big data; electronic markets; analytics; behavior;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.06642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.