IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.09273.html
   My bibliography  Save this paper

Pay-As-You-Drive Insurance Pricing Model

Author

Listed:
  • Safoora Zarei
  • Ali R. Fallahi

Abstract

Every time drivers take to the road, and with each mile that they drive, exposes themselves and others to the risk of an accident. Insurance premiums are only weakly linked to mileage, however, and have lump-sum characteristics largely. The result is too much driving, and too many accidents. In this paper, we introduce some useful theoretical results for Pay-As-You-Drive in Automobile insurances. We consider a counting process and also find the distribution of discounted collective risk model when the counting process is non-homogeneous Poisson.

Suggested Citation

  • Safoora Zarei & Ali R. Fallahi, 2019. "Pay-As-You-Drive Insurance Pricing Model," Papers 1912.09273, arXiv.org.
  • Handle: RePEc:arx:papers:1912.09273
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.09273
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ian W. H. Parry, 2005. "Is Pay-as-You-Drive Insurance a Better Way to Reduce Gasoline than Gasoline Taxes?," American Economic Review, American Economic Association, vol. 95(2), pages 288-293, May.
    2. Frangos, Nicholas E. & Vrontos, Spyridon D., 2001. "Design of Optimal Bonus-Malus Systems With a Frequency and a Severity Component On an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 1-22, May.
    3. Mahmoudvand, Rahim & Hassani, Hossein, 2009. "Generalized Bonus-Malus Systems with a Frequency and a Severity Component on an Individual Basis in Automobile Insurance," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 307-315, May.
    4. Abootaleb Shirvani & Yuan Hu & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Option Pricing with Mixed Levy Subordinated Price Process and Implied Probability Weighting Function," Papers 1910.05902, arXiv.org, revised Apr 2020.
    5. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    6. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    7. Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "Multiple Subordinated Modeling of Asset Returns," Papers 1907.12600, arXiv.org.
    8. Abootaleb Shirvani & Dimitri Volchenkov, 2019. "A Regulated Market Under Sanctions: On Tail Dependence Between Oil, Gold, and Tehran Stock Exchange Index," Papers 1911.01826, arXiv.org.
    9. Abootaleb Shirvani & Stoyan V. Stoyanov & Frank J. Fabozzi & Svetlozar T. Rachev, 2019. "Equity Premium Puzzle or Faulty Economic Modelling?," Papers 1909.13019, arXiv.org, revised Jan 2020.
    10. Gerber, Hans U. & Shiu, Elias S. W., 1997. "The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 129-137, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Søren Asmussen, 2014. "Modeling and Performance of Bonus-Malus Systems: Stationarity versus Age-Correction," Risks, MDPI, vol. 2(1), pages 1-25, March.
    2. Claude Lefèvre & Philippe Picard, 2013. "Ruin Time and Severity for a Lévy Subordinator Claim Process: A Simple Approach," Risks, MDPI, vol. 1(3), pages 1-21, December.
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    4. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    5. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    6. Tzougas, George & Vrontos, Spyridon & Frangos, Nicholas, 2014. "Optimal Bonus-Malus Systems using finite mixture models," LSE Research Online Documents on Economics 70919, London School of Economics and Political Science, LSE Library.
    7. Mahmoudvand Rahim & Tan Chong It & Abbasi Narges, 2017. "Adjusting the Premium Relativities in a Bonus-Malus System: An Integrated Approach Using the First Claim Time and the Number of Claims," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 11(2), pages 1-19, July.
    8. Lanpeng Ji & Chunsheng Zhang, 2014. "A Duality Result for the Generalized Erlang Risk Model," Risks, MDPI, vol. 2(4), pages 1-11, November.
    9. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    10. Abootaleb Shirvani, 2020. "Stock Returns and Roughness Extreme Variations: A New Model for Monitoring 2008 Market Crash and 2015 Flash Crash," Applied Economics and Finance, Redfame publishing, vol. 7(3), pages 78-95, May.
    11. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    12. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    13. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    14. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    15. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    16. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    17. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    18. Angers, Jean-François & Desjardins, Denise & Dionne, Georges & Guertin, François, 2006. "Vehicle and Fleet Random Effects in a Model of Insurance Rating for Fleets of Vehicles," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 25-77, May.
    19. Hailiang Yang, 2000. "An Integrated Risk Management Method: VaR Approach," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 201-219, September.
    20. Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "A Rational Finance Explanation of the Stock Predictability Puzzle," Papers 1911.02194, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.09273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.