IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1911.06698.html
   My bibliography  Save this paper

Cyber bonds and their pricing models

Author

Listed:
  • Oleg Kolesnikov
  • Alexander Markov
  • Daulet Smagulov
  • Sergejs Solovjovs

Abstract

Motivated by the developments in cyber risk treatment in the finance industry, we propose a general framework of cyber bond, whose main purpose is to insure (compensate) losses of a cyber attack. Based on a database of publicly available cyber events, we determine cyber loss distribution parameters and use them to numerically simulate cyber bond price, yield, and other characteristics. We also consider two possible approaches to cyber bond coupon calculation.

Suggested Citation

  • Oleg Kolesnikov & Alexander Markov & Daulet Smagulov & Sergejs Solovjovs, 2019. "Cyber bonds and their pricing models," Papers 1911.06698, arXiv.org.
  • Handle: RePEc:arx:papers:1911.06698
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1911.06698
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nowak, Piotr & Romaniuk, Maciej, 2013. "Pricing and simulations of catastrophe bonds," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 18-28.
    2. Å tulec, Ivana & Petljak, Kristina & Naletina, Dora, 2019. "Weather impact on retail sales: How can weather derivatives help with adverse weather deviations?," Journal of Retailing and Consumer Services, Elsevier, vol. 49(C), pages 1-10.
    3. Knut Aase, 1999. "An Equilibrium Model of Catastrophe Insurance Futures and Spreads," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 24(1), pages 69-96, June.
    4. Taylor, James W. & Buizza, Roberto, 2006. "Density forecasting for weather derivative pricing," International Journal of Forecasting, Elsevier, vol. 22(1), pages 29-42.
    5. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    6. [WEF] World Economic Forum, 2016. "The Global Risks Report 2016: 11th Edition," Working Papers id:10737, eSocialSciences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pérez-Fructuoso, María José, 2017. "Tarificación de bonos sobre catástrofes (cat bonds) con desencadenantes de índices de pérdidas. Modelación mediante un proceso de Ornstein-Uhlenbeck || Pricing Loss Index Triggered Cat Bonds. An Ornst," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 24(1), pages 340-361, Diciembre.
    2. Eckhard Platen & David Taylor, 2016. "Loading Pricing of Catastrophe Bonds and Other Long-Dated, Insurance-Type Contracts," Research Paper Series 379, Quantitative Finance Research Centre, University of Technology, Sydney.
    3. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    4. Pavel V. Shevchenko & Jiwook Jang & Matteo Malavasi & Gareth W. Peters & Georgy Sofronov & Stefan Truck, 2022. "The Nature of Losses from Cyber-Related Events: Risk Categories and Business Sectors," Papers 2202.10189, arXiv.org, revised Mar 2022.
    5. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    6. Ulrik Franke, 2020. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 760-784, October.
    7. Michael McShane & Trung Nguyen, 2020. "Time-varying effects of cyberattacks on firm value," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 580-615, October.
    8. Hu, Jianhao & Zhang, Xuan & Chen, Hanyu(Yuki) & Li, Wanyue, 2024. "When it rains, it pours? The impact of weather on customer returns in the brick-and-mortar retail store," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    9. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    10. Ulrik Franke, 0. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-25.
    11. Zaman, Gheorghe & Georgescu, George, 2016. "Stabilitatea financiară a României. Determinanți și proiecții pentru următoarele două decenii [Financial stability in Romania. Determinants and projections for the two next decades]," MPRA Paper 96078, University Library of Munich, Germany.
    12. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    13. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    15. Sarkar, P. & Wahab, M.I.M. & Fang, L., 2023. "Weather rebate contracts for different risk attitudes of supply chain members," European Journal of Operational Research, Elsevier, vol. 311(1), pages 139-153.
    16. Aase, Knut K, 2005. "Using Option Pricing Theory to Infer About Historical Equity Premiums," University of California at Los Angeles, Anderson Graduate School of Management qt3dd602j5, Anderson Graduate School of Management, UCLA.
    17. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    18. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    19. Geman, Helyette & Yor, Marc, 1997. "Stochastic time changes in catastrophe option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 185-193, December.
    20. Hernández Arango, José Miguel & Carvajal-Serna, Luis Fernando, 2017. "Cobertura al riesgo ante la variabilidad hidrológica en una central hidráulica a filo de agua usando derivados climáticos," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 87, pages 191-222, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1911.06698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.