IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1908.00734.html
   My bibliography  Save this paper

Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks

Author

Listed:
  • Marco Schreyer
  • Timur Sattarov
  • Christian Schulze
  • Bernd Reimer
  • Damian Borth

Abstract

The detection of fraud in accounting data is a long-standing challenge in financial statement audits. Nowadays, the majority of applied techniques refer to handcrafted rules derived from known fraud scenarios. While fairly successful, these rules exhibit the drawback that they often fail to generalize beyond known fraud scenarios and fraudsters gradually find ways to circumvent them. In contrast, more advanced approaches inspired by the recent success of deep learning often lack seamless interpretability of the detected results. To overcome this challenge, we propose the application of adversarial autoencoder networks. We demonstrate that such artificial neural networks are capable of learning a semantic meaningful representation of real-world journal entries. The learned representation provides a holistic view on a given set of journal entries and significantly improves the interpretability of detected accounting anomalies. We show that such a representation combined with the networks reconstruction error can be utilized as an unsupervised and highly adaptive anomaly assessment. Experiments on two datasets and initial feedback received by forensic accountants underpinned the effectiveness of the approach.

Suggested Citation

  • Marco Schreyer & Timur Sattarov & Christian Schulze & Bernd Reimer & Damian Borth, 2019. "Detection of Accounting Anomalies in the Latent Space using Adversarial Autoencoder Neural Networks," Papers 1908.00734, arXiv.org.
  • Handle: RePEc:arx:papers:1908.00734
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1908.00734
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jans, Mieke & Lybaert, Nadine & Vanhoof, Koen, 2010. "Internal fraud risk reduction: Results of a data mining case study," International Journal of Accounting Information Systems, Elsevier, vol. 11(1), pages 17-41.
    2. Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
    3. Debreceny, Roger S. & Gray, Glen L., 2010. "Data mining journal entries for fraud detection: An exploratory study," International Journal of Accounting Information Systems, Elsevier, vol. 11(3), pages 157-181.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Muller & Marco Schreyer & Timur Sattarov & Damian Borth, 2022. "RESHAPE: Explaining Accounting Anomalies in Financial Statement Audits by enhancing SHapley Additive exPlanations," Papers 2209.09157, arXiv.org.
    2. Ahmad Faisal Hayek & Nora Azima Noordin & Khaled Hussainey, 2022. "Machine Learning and External Auditor Perception: An Analysis for UAE External Auditors Using Technology Acceptance Model," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 21(4), pages 475-500, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio Albuquerque & Paula Gomes Dos Santos, 2023. "Recent Trends in Accounting and Information System Research: A Literature Review Using Textual Analysis Tools," FinTech, MDPI, vol. 2(2), pages 1-27, April.
    2. Werner, Michael, 2017. "Financial process mining - Accounting data structure dependent control flow inference," International Journal of Accounting Information Systems, Elsevier, vol. 25(C), pages 57-80.
    3. Gray, Glen L. & Debreceny, Roger S., 2014. "A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits," International Journal of Accounting Information Systems, Elsevier, vol. 15(4), pages 357-380.
    4. Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.
    5. Rafael Becerra-Vicario & David Alaminos & Eva Aranda & Manuel A. Fernández-Gámez, 2020. "Deep Recurrent Convolutional Neural Network for Bankruptcy Prediction: A Case of the Restaurant Industry," Sustainability, MDPI, vol. 12(12), pages 1-15, June.
    6. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    7. David Alaminos & Manuel Ángel Fernández, 2019. "Why do football clubs fail financially? A financial distress prediction model for European professional football industry," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
    8. Chen, Yuh-Jen & Wu, Chun-Han & Chen, Yuh-Min & Li, Hsin-Ying & Chen, Huei-Kuen, 2017. "Enhancement of fraud detection for narratives in annual reports," International Journal of Accounting Information Systems, Elsevier, vol. 26(C), pages 32-45.
    9. Berkin, Anil & Aerts, Walter & Van Caneghem, Tom, 2023. "Feasibility analysis of machine learning for performance-related attributional statements," International Journal of Accounting Information Systems, Elsevier, vol. 48(C).
    10. Monica Ramos Montesdeoca & Agustín J. Sánchez Medina & Felix Blázquez Santana, 2019. "Research Topics in Accounting Fraud in the 21st Century: A State of the Art," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
    11. Bradford, Marianne & Earp, Julia B. & Grabski, Severin, 2014. "Centralized end-to-end identity and access management and ERP systems: A multi-case analysis using the Technology Organization Environment framework," International Journal of Accounting Information Systems, Elsevier, vol. 15(2), pages 149-165.
    12. Ricardo Sartori Cella & Ercilio Zanolla, 2018. "Benford’s Law and transparency: an analysis of municipal expenditure," Brazilian Business Review, Fucape Business School, vol. 15(4), pages 331-347, July.
    13. Rautiainen, Antti & Scapens, Robert W. & Järvenpää, Marko & Auvinen, Tommi & Sajasalo, Pasi, 2024. "Towards fluid role identity of management accountants: A case study of a Finnish bank," The British Accounting Review, Elsevier, vol. 56(4).
    14. Jun, So Young & Kim, Dong Sung & Jung, Suk Yoon & Jun, Sang Gyung & Kim, Jong Woo, 2022. "Stock investment strategy combining earnings power index and machine learning," International Journal of Accounting Information Systems, Elsevier, vol. 47(C).
    15. Koreff, Jared & Weisner, Martin & Sutton, Steve G., 2021. "Data analytics (ab) use in healthcare fraud audits," International Journal of Accounting Information Systems, Elsevier, vol. 42(C).
    16. Mushang Lee & Yu-Lan Huang, 2020. "Corporate Social Responsibility and Corporate Performance: A Hybrid Text Mining Algorithm," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    17. Montag, Josef, 2017. "Identifying odometer fraud in used car market data," Transport Policy, Elsevier, vol. 60(C), pages 10-23.
    18. Nora Muñoz-Izquierdo & María-del-Mar Camacho-Miñano & María-Jesús Segovia-Vargas & David Pascual-Ezama, 2019. "Is the External Audit Report Useful for Bankruptcy Prediction? Evidence Using Artificial Intelligence," IJFS, MDPI, vol. 7(2), pages 1-23, April.
    19. Montag, Josef, 2015. "Identifying Odometer Fraud: Evidence from the Used Car Market in the Czech Republic," MPRA Paper 65182, University Library of Munich, Germany.
    20. Zhang, Chao & Zhu, Weidong & Dai, Jun & Wu, Yong & Chen, Xulong, 2023. "Ethical impact of artificial intelligence in managerial accounting," International Journal of Accounting Information Systems, Elsevier, vol. 49(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1908.00734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.