IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.09144.html
   My bibliography  Save this paper

Consistent upper price bounds for exotic options given a finite number of call prices and their convergence

Author

Listed:
  • Nicole Bauerle
  • Daniel Schmithals

Abstract

We consider the problem of finding a consistent upper price bound for exotic options whose payoff depends on the stock price at two different predetermined time points (e.g. Asian option), given a finite number of observed call prices for these maturities. A model-free approach is used, only taking into account that the (discounted) stock price process is a martingale under the no-arbitrage condition. In case the payoff is directionally convex we obtain the worst case marginal pricing measures. The speed of convergence of the upper price bound is determined when the number of observed stock prices increases. We illustrate our findings with some numerical computations.

Suggested Citation

  • Nicole Bauerle & Daniel Schmithals, 2019. "Consistent upper price bounds for exotic options given a finite number of call prices and their convergence," Papers 1907.09144, arXiv.org.
  • Handle: RePEc:arx:papers:1907.09144
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.09144
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    2. Chen, X. & Deelstra, G. & Dhaene, J. & Vanmaele, M., 2008. "Static super-replicating strategies for a class of exotic options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1067-1085, June.
    3. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    4. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    5. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    6. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    7. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    8. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    9. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    10. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    11. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    12. Hobson, David & Laurence, Peter & Wang, Tai-Ho, 2005. "Static-arbitrage optimal subreplicating strategies for basket options," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 553-572, December.
    13. Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
    14. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    15. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    2. Hansjörg Albrecher & Philipp Mayer, 2010. "Semi-Static Hedging Strategies For Exotic Options," World Scientific Book Chapters, in: Rüdiger Kiesel & Matthias Scherer & Rudi Zagst (ed.), Alternative Investments And Strategies, chapter 14, pages 345-373, World Scientific Publishing Co. Pte. Ltd..
    3. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    4. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    5. Nicole Bäuerle & Daniel Schmithals, 2019. "Martingale optimal transport in the discrete case via simple linear programming techniques," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(3), pages 453-476, December.
    6. Nabil Kahalé, 2017. "Superreplication of Financial Derivatives via Convex Programming," Management Science, INFORMS, vol. 63(7), pages 2323-2339, July.
    7. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    8. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    9. Linn Engstrom & Sigrid Kallblad & Johan Karlsson, 2024. "Computation of Robust Option Prices via Structured Multi-Marginal Martingale Optimal Transport," Papers 2406.09959, arXiv.org.
    10. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    11. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    12. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    13. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    14. Arash Fahim & Yu-Jui Huang, 2014. "Model-independent Superhedging under Portfolio Constraints," Papers 1402.2599, arXiv.org, revised Jun 2015.
    15. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    16. Julian Sester, 2023. "On intermediate Marginals in Martingale Optimal Transportation," Papers 2307.09710, arXiv.org, revised Nov 2023.
    17. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    18. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    19. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    20. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.09144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.