IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1907.02100.html
   My bibliography  Save this paper

Machine learning and behavioral economics for personalized choice architecture

Author

Listed:
  • Emir Hrnjic
  • Nikodem Tomczak

Abstract

Behavioral economics changed the way we think about market participants and revolutionized policy-making by introducing the concept of choice architecture. However, even though effective on the level of a population, interventions from behavioral economics, nudges, are often characterized by weak generalisation as they struggle on the level of individuals. Recent developments in data science, artificial intelligence (AI) and machine learning (ML) have shown ability to alleviate some of the problems of weak generalisation by providing tools and methods that result in models with stronger predictive power. This paper aims to describe how ML and AI can work with behavioral economics to support and augment decision-making and inform policy decisions by designing personalized interventions, assuming that enough personalized traits and psychological variables can be sampled.

Suggested Citation

  • Emir Hrnjic & Nikodem Tomczak, 2019. "Machine learning and behavioral economics for personalized choice architecture," Papers 1907.02100, arXiv.org.
  • Handle: RePEc:arx:papers:1907.02100
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1907.02100
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olena LIASHENKO & Tetyana KRAVETS & Matvii PROKOPENKO, 2021. "Consumer behavior clustering of food retail chains by machine learning algorithms," Access Journal, Access Press Publishing House, vol. 2(3), pages 234-251, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1907.02100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.