IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1902.10948.html
   My bibliography  Save this paper

Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network

Author

Listed:
  • Jinho Lee
  • Raehyun Kim
  • Yookyung Koh
  • Jaewoo Kang

Abstract

We applied Deep Q-Network with a Convolutional Neural Network function approximator, which takes stock chart images as input, for making global stock market predictions. Our model not only yields profit in the stock market of the country where it was trained but generally yields profit in global stock markets. We trained our model only in the US market and tested it in 31 different countries over 12 years. The portfolios constructed based on our model's output generally yield about 0.1 to 1.0 percent return per transaction prior to transaction costs in 31 countries. The results show that there are some patterns on stock chart image, that tend to predict the same future stock price movements across global stock markets. Moreover, the results show that future stock prices can be predicted even if the training and testing procedures are done in different countries. Training procedure could be done in relatively large and liquid markets (e.g., USA) and tested in small markets. This result demonstrates that artificial intelligence based stock price forecasting models can be used in relatively small markets (emerging countries) even though they do not have a sufficient amount of data for training.

Suggested Citation

  • Jinho Lee & Raehyun Kim & Yookyung Koh & Jaewoo Kang, 2019. "Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network," Papers 1902.10948, arXiv.org.
  • Handle: RePEc:arx:papers:1902.10948
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1902.10948
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    3. repec:pri:cepsud:91malkiel is not listed on IDEAS
    4. Schwert, G. William, 2003. "Anomalies and market efficiency," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 15, pages 939-974, Elsevier.
    5. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    6. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    7. Abarbanell, JS & Bushee, BJ, 1997. "Fundamental analysis, future earnings, and stock prices," Journal of Accounting Research, Wiley Blackwell, vol. 35(1), pages 1-24.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    10. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    11. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    12. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Supriya Bajpai, 2021. "Application of deep reinforcement learning for Indian stock trading automation," Papers 2106.16088, arXiv.org.
    2. Huifang Huang & Ting Gao & Yi Gui & Jin Guo & Peng Zhang, 2022. "Stock Trading Optimization through Model-based Reinforcement Learning with Resistance Support Relative Strength," Papers 2205.15056, arXiv.org.
    3. Jinho Lee & Jaewoo Kang, 2020. "Effectively training neural networks for stock index prediction: Predicting the S&P 500 index without using its index data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    4. Titi Purwandari & Riaman & Yuyun Hidayat & Sukono & Riza Andrian Ibrahim & Rizki Apriva Hidayana, 2023. "Selecting and Weighting Mechanisms in Stock Portfolio Design Based on Clustering Algorithm and Price Movement Analysis," Mathematics, MDPI, vol. 11(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinho Lee & Sungwoo Park & Jungyu Ahn & Jonghun Kwak, 2022. "ETF Portfolio Construction via Neural Network trained on Financial Statement Data," Papers 2207.01187, arXiv.org.
    2. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    3. Stefanescu, Razvan & Dumitriu, Ramona, 2016. "Particularitǎţi ale evoluţiei variabilelor financiare [Some particularities of the financial variables evolution]," MPRA Paper 73481, University Library of Munich, Germany, revised 02 Sep 2016.
    4. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    5. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability Of Technical Trading Rules In Us Futures Markets: A Data Snooping Free Test," 2004 Conference, April 19-20, 2004, St. Louis, Missouri 19011, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    6. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    7. Felicia Ramona Birau, 2011. "An Analysis Of Weak-Form Efficiency On The Bucharest Stock Exchange," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 3(39), pages 194-205.
    8. Qianwei Ying & Tahir Yousaf & Qurat ul Ain & Yasmeen Akhtar & Muhammad Shahid Rasheed, 2019. "Stock Investment and Excess Returns: A Critical Review in the Light of the Efficient Market Hypothesis," JRFM, MDPI, vol. 12(2), pages 1-22, June.
    9. Daniele SCHILIRÒ, 2013. "Bounded Rationality: Psychology, Economics And The Financial Crises," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 4(1), pages 97-108.
    10. Concetta Sorropago, 2014. "Behavioral Finance and Agent Based Model: the new evolving discipline of quantitative behavioral finance ?," DIAG Technical Reports 2014-13, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    11. repec:idn:journl:v:1:y:2019:i:sp1:p:1-26 is not listed on IDEAS
    12. Andrew Phiri, 2022. "Changing efficiency of BRICS currency markets during the COVID-19 pandemic," Economic Change and Restructuring, Springer, vol. 55(3), pages 1673-1699, August.
    13. Firat Melih Yilmaz & Engin Yildiztepe, 2024. "Statistical Evaluation of Deep Learning Models for Stock Return Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 221-244, January.
    14. Ignacio Escanuela Romana & Clara Escanuela Nieves, 2023. "A spectral approach to stock market performance," Papers 2305.05762, arXiv.org.
    15. Adriano S. Koshiyama & Nikan Firoozye & Philip Treleaven, 2019. "A derivatives trading recommendation system: The mid‐curve calendar spread case," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(2), pages 83-103, April.
    16. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    17. Adriano Soares Koshiyama & Nick Firoozye & Philip Treleaven, 2018. "A Machine Learning-based Recommendation System for Swaptions Strategies," Papers 1810.02125, arXiv.org.
    18. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    19. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    20. Felicia Ramona Birău, 2012. "The Impact Of Behavioral Finance On Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 45-50, September.
    21. Daniel Martin Katz & Michael J Bommarito II & Tyler Soellinger & James Ming Chen, 2015. "Law on the Market? Abnormal Stock Returns and Supreme Court Decision-Making," Papers 1508.05751, arXiv.org, revised May 2017.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1902.10948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.