IDEAS home Printed from https://ideas.repec.org/p/aeg/report/2014-13.html
   My bibliography  Save this paper

Behavioral Finance and Agent Based Model: the new evolving discipline of quantitative behavioral finance ?

Author

Listed:
  • Concetta Sorropago

    (Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza")

Abstract

The financial crisis of recent years has deeply questioned the ability of the traditional economic models to help to govern the complexity of the modern financial world. A growing number of scholars, practitioners, and regulators agree that the recurring financial crisis as well as the overwhelming evidence of market anomalies could be explained only resorting to behavioral finance. Behavioral finance has been able to identify the individual investor irrationality but unable to quantify its total effect on the market in terms of price deviation from fundamental. Quantitative Behavioral Finance (QBF) is an emerging discipline that attempts to model the impact of human cognitive biases over asset prices. The aim of this paper is to provide an overview of its theoretical foundations and its challenges. The paper is divided in two parts. In the first one, we present a much selected literature review of the key theoretical foundations. Why does this new field of study emerge ? What topics does it study ? Which disciplines have contributed the most and why ? In the second part, the paper sketches an outline and provides a preliminary, set of references about the agent-based model approach as one of the most promising line of research in quantitative modeling the behavioral investors’ impact on the market. The literature surveyed supports the use of this class of models because of their capability in copying with heterogeneous agents’ behaviours either rational or bounded rational without losing the ability to identify and examine how each of them operates separately or in interaction. Taken as a whole, the articles reviewed here indicate that many open issues remains both on the theoretical design of agent based models, due to the large degree of freedom of modelers, and on the empirical use of this class of models for real political economic implications, due to the arduous methods for the model validation, calibration and estimation.

Suggested Citation

  • Concetta Sorropago, 2014. "Behavioral Finance and Agent Based Model: the new evolving discipline of quantitative behavioral finance ?," DIAG Technical Reports 2014-13, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
  • Handle: RePEc:aeg:report:2014-13
    as

    Download full text from publisher

    File URL: http://www.dis.uniroma1.it/~bibdis/RePEc/aeg/report/2014-13.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    3. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    4. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    5. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    6. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    7. repec:pri:cepsud:91malkiel is not listed on IDEAS
    8. Serge Hayward, 2011. "Predicting Prices Of Financial Assets: From Classical Economics To Intelligent Finance," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 229-247.
    9. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    10. Herbert A. Simon, 1991. "Bounded Rationality and Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 125-134, February.
    11. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    12. Hommes, C.H. & Wagener, F.O.O., 2008. "Complex evolutionary systems in behavioral finance," CeNDEF Working Papers 08-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    13. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    14. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    15. Massimo Egidi, 2005. "From Bounded Rationality to Behavioral Economics," Experimental 0507002, University Library of Munich, Germany.
    16. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    17. Simon, Herbert A, 1979. "Rational Decision Making in Business Organizations," American Economic Review, American Economic Association, vol. 69(4), pages 493-513, September.
    18. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    19. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    20. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    21. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    22. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    23. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Behavioral Finance and Agent Based Model: the new evolving discipline of quantitative behavioral finance ?
      by Alessandro Cerboni in Knowledge Team on 2014-10-13 02:04:19

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giridhari Mohanta, 2024. "Small Savings Scheme of the Post Office and Savings Habit of People: The Role of Financial Consultant," Business Perspectives and Research, , vol. 12(1), pages 65-82, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    2. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    4. Daniele SCHILIRÒ, 2013. "Bounded Rationality: Psychology, Economics And The Financial Crises," Theoretical and Practical Research in the Economic Fields, ASERS Publishing, vol. 4(1), pages 97-108.
    5. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    6. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    7. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    8. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    9. Christopher R. Stephens & Harald A. Benink & José Luís Gordillo & Juan Pablo Pardo-Guerra, 2021. "A New Measure of Market Inefficiency," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    10. Alexander Ludwig & Alexander Zimper, 2013. "A decision-theoretic model of asset-price underreaction and overreaction to dividend news," Annals of Finance, Springer, vol. 9(4), pages 625-665, November.
    11. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Post-Print hal-02084910, HAL.
    12. Vivien Lespagnol & Juliette Rouchier, 2018. "Trading Volume and Price Distortion: An Agent-Based Model with Heterogenous Knowledge of Fundamentals," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 991-1020, April.
    13. Eduard Marinov, 2017. "The 2017 Nobel Prize in Economics," Economic Thought journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 6, pages 117-159.
    14. Committee, Nobel Prize, 2017. "Richard H. Thaler: Integrating Economics with Psychology," Nobel Prize in Economics documents 2017-1, Nobel Prize Committee.
    15. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Jan Polach & Jiri Kukacka, 2019. "Prospect Theory in the Heterogeneous Agent Model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(1), pages 147-174, March.
    17. Soufian, Mona & Forbes, William & Hudson, Robert, 2014. "Adapting financial rationality: Is a new paradigm emerging?," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 25(8), pages 724-742.
    18. Leopoldo S'anchez-Cant'u & Carlos Arturo Soto-Campos & Andriy Kryvko, 2016. "Evidence of Self-Organization in Time Series of Capital Markets," Papers 1604.03996, arXiv.org, revised Mar 2017.
    19. Stefano DellaVigna, 2009. "Psychology and Economics: Evidence from the Field," Journal of Economic Literature, American Economic Association, vol. 47(2), pages 315-372, June.
    20. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.

    More about this item

    Keywords

    Literature review ; Behavioral Finance ; Agent Computational Economics;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aeg:report:2014-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Antonietta Angelica Zucconi (email available below). General contact details of provider: https://edirc.repec.org/data/dirosit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.