IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.08416.html
   My bibliography  Save this paper

Tail probabilities for short-term returns on stocks

Author

Listed:
  • Henrik O. Rasmussen
  • Paul Wilmott

Abstract

We consider the tail probabilities of stock returns for a general class of stochastic volatility models. In these models, the stochastic differential equation for volatility is autonomous, time-homogeneous and dependent on only a finite number of dimensional parameters. Three bounds on the high-volatility limits of the drift and diffusion coefficients of volatility ensure that volatility is mean-reverting, has long memory and is as volatile as the stock price. Dimensional analysis then provides leading-order approximations to the drift and diffusion coefficients of volatility for the high-volatility limit. Thereby, using the Kolmogorov forward equation for the transition probability of volatility, we find that the tail probability for short-term returns falls off like an inverse cubic. Our analysis then provides a possible explanation for the inverse cubic fall off that Gopikrishnan et al. (1998) report for returns over 5-120 minutes intervals. We find, moreover, that the tail probability scales like the length of the interval, over which the return is measured, to the power 3/2. There do not seem to be any empirical results in the literature with which to compare this last prediction.

Suggested Citation

  • Henrik O. Rasmussen & Paul Wilmott, 2018. "Tail probabilities for short-term returns on stocks," Papers 1809.08416, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1809.08416
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.08416
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    2. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    3. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    6. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    7. Parameswaran Gopikrishnan & Martin Meyer & Luis A Nunes Amaral & H Eugene Stanley, 1998. "Inverse Cubic Law for the Probability Distribution of Stock Price Variations," Papers cond-mat/9803374, arXiv.org, revised May 1998.
    8. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    9. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    10. P. Gopikrishnan & M. Meyer & L.A.N. Amaral & H.E. Stanley, 1998. "Inverse cubic law for the distribution of stock price variations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 3(2), pages 139-140, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    4. Lux, Thomas, 2008. "Applications of statistical physics in finance and economics," Kiel Working Papers 1425, Kiel Institute for the World Economy (IfW Kiel).
    5. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    6. Thomas Lux, 2009. "Applications of Statistical Physics in Finance and Economics," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 9, Edward Elgar Publishing.
    7. Chuo Chang, 2020. "Dynamic correlations and distributions of stock returns on China's stock markets," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(1), pages 1-6.
    8. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    9. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    10. Sabiou M. Inoua & Vernon L. Smith, 2022. "Perishable goods versus re-tradable assets: A theoretical reappraisal of a fundamental dichotomy," Chapters, in: Sascha Füllbrunn & Ernan Haruvy (ed.), Handbook of Experimental Finance, chapter 15, pages 162-171, Edward Elgar Publishing.
    11. Bucsa, G. & Jovanovic, F. & Schinckus, C., 2011. "A unified model for price return distributions used in econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3435-3443.
    12. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    13. Gu, Gao-Feng & Zhou, Wei-Xing, 2007. "Statistical properties of daily ensemble variables in the Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 497-506.
    14. Repetowicz, Przemysław & Richmond, Peter, 2004. "Modeling of waiting times and price changes in currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 677-693.
    15. Grobys, Klaus, 2023. "Correlation versus co-fractality: Evidence from foreign-exchange-rate variances," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Indranil Mukherjee & Amitava Sarkar, 2011. "Complexity, Financial Markets and their Scaling Laws," DEGIT Conference Papers c016_008, DEGIT, Dynamics, Economic Growth, and International Trade.
    17. Wang, Lei & Liu, Lutao, 2020. "Long-range correlation and predictability of Chinese stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    18. Klaus Grobys, 2024. "Science or scientism? On the momentum illusion," Annals of Finance, Springer, vol. 20(4), pages 479-519, December.
    19. Tompkins, Robert G. & D'Ecclesia, Rita L., 2006. "Unconditional return disturbances: A non-parametric simulation approach," Journal of Banking & Finance, Elsevier, vol. 30(1), pages 287-314, January.
    20. Stanley, H.E & Amaral, L.A.N & Gopikrishnan, P & Plerou, V, 2000. "Scale invariance and universality of economic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(1), pages 31-41.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.08416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.