IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.05890.html
   My bibliography  Save this paper

A High Order Method for Pricing of Financial Derivatives using Radial Basis Function generated Finite Differences

Author

Listed:
  • Slobodan Milovanovi'c
  • Lina von Sydow

Abstract

In this paper, we consider the numerical pricing of financial derivatives using Radial Basis Function generated Finite Differences in space. Such discretization methods have the advantage of not requiring Cartesian grids. Instead, the nodes can be placed with higher density in areas where there is a need for higher accuracy. Still, the discretization matrix is fairly sparse. As a model problem, we consider the pricing of European options in 2D. Since such options have a discontinuity in the first derivative of the payoff function which prohibits high order convergence, we smooth this function using an established technique for Cartesian grids. Numerical experiments show that we acquire a fourth order scheme in space, both for the uniform and the nonuniform node layouts that we use. The high order method with the nonuniform node layout achieves very high accuracy with relatively few nodes. This renders the potential for solving pricing problems in higher spatial dimensions since the computational memory and time demand become much smaller with this method compared to standard techniques.

Suggested Citation

  • Slobodan Milovanovi'c & Lina von Sydow, 2018. "A High Order Method for Pricing of Financial Derivatives using Radial Basis Function generated Finite Differences," Papers 1808.05890, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1808.05890
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.05890
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milovanović, Slobodan & von Sydow, Lina, 2020. "A high order method for pricing of financial derivatives using Radial Basis Function generated Finite Differences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 205-217.
    2. Slobodan Milovanovi'c, 2018. "Pricing Financial Derivatives using Radial Basis Function generated Finite Differences with Polyharmonic Splines on Smoothly Varying Node Layouts," Papers 1808.02365, arXiv.org, revised Aug 2018.
    3. Lyu, Jisang & Park, Eunchae & Kim, Sangkwon & Lee, Wonjin & Lee, Chaeyoung & Yoon, Sungha & Park, Jintae & Kim, Junseok, 2021. "Optimal non-uniform finite difference grids for the Black–Scholes equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 690-704.
    4. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somayeh Abdi-Mazraeh & Ali Khani & Safar Irandoust-Pakchin, 2020. "Multiple Shooting Method for Solving Black–Scholes Equation," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 723-746, December.
    2. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
    3. Milovanović, Slobodan & von Sydow, Lina, 2020. "A high order method for pricing of financial derivatives using Radial Basis Function generated Finite Differences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 205-217.
    4. Gong, Pu & Dai, Jun, 2017. "Pricing real estate index options under stochastic interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 309-323.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.05890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.