IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1807.05477.html
   My bibliography  Save this paper

Linear Programming Based Near-Optimal Pricing for Laminar Bayesian Online Selection

Author

Listed:
  • Nima Anari
  • Rad Niazadeh
  • Amin Saberi
  • Ali Shameli

Abstract

The Bayesian online selection problem aims to design a pricing scheme for a sequence of arriving buyers that maximizes the expected social welfare (or revenue) subject to different structural constraints. Inspired by applications with a hierarchy of service, this paper focuses on the cases where a laminar matroid characterizes the set of served buyers. We give the first Polynomial-Time Approximation Scheme (PTAS) for the problem when the laminar matroid has constant depth. Our approach is based on rounding the solution of a hierarchy of linear programming relaxations that approximate the optimum online solution with any degree of accuracy, plus a concentration argument showing that rounding incurs a small loss. We also study another variation, which we call the production-constrained problem. The allowable set of served buyers is characterized by a collection of production and shipping constraints that form a particular example of a laminar matroid. Using a similar LP-based approach, we design a PTAS for this problem, although in this special case the depth of the underlying laminar matroid is not necessarily a constant. The analysis exploits the negative dependency of the optimum selection rule in the lower levels of the laminar family. Finally, to demonstrate the generality of our technique, we employ the linear programming-based approach employed in the paper to re-derive some of the classic prophet inequalities known in the literature -- as a side result.

Suggested Citation

  • Nima Anari & Rad Niazadeh & Amin Saberi & Ali Shameli, 2018. "Linear Programming Based Near-Optimal Pricing for Laminar Bayesian Online Selection," Papers 1807.05477, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:1807.05477
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1807.05477
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Bellman, 1954. "Some Applications of the Theory of Dynamic Programming---A Review," Operations Research, INFORMS, vol. 2(3), pages 275-288, August.
    2. Vahideh H. Manshadi & Shayan Oveis Gharan & Amin Saberi, 2012. "Online Stochastic Matching: Online Actions Based on Offline Statistics," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 559-573, November.
    3. Jason D. Hartline, 2012. "Approximation in Mechanism Design," American Economic Review, American Economic Association, vol. 102(3), pages 330-336, May.
    4. Shuchi Chawla & Jason Hartline & David Malec & Balasubramanian Sivan, 2010. "Sequential Posted Pricing and Multi-parameter Mechanism Design," Discussion Papers 1486, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alaei, Saeed & Hartline, Jason & Niazadeh, Rad & Pountourakis, Emmanouil & Yuan, Yang, 2019. "Optimal auctions vs. anonymous pricing," Games and Economic Behavior, Elsevier, vol. 118(C), pages 494-510.
    2. Saeed Alaei & Ali Makhdoumi & Azarakhsh Malekian & Rad Niazadeh, 2022. "Descending Price Auctions with Bounded Number of Price Levels and Batched Prophet Inequality," Papers 2203.01384, arXiv.org.
    3. Yann Disser & John Fearnley & Martin Gairing & Oliver Göbel & Max Klimm & Daniel Schmand & Alexander Skopalik & Andreas Tönnis, 2020. "Hiring Secretaries over Time: The Benefit of Concurrent Employment," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 323-352, February.
    4. Kleinberg, Robert & Weinberg, S. Matthew, 2019. "Matroid prophet inequalities and applications to multi-dimensional mechanism design," Games and Economic Behavior, Elsevier, vol. 113(C), pages 97-115.
    5. Yiding Feng & Jason Hartline & Yingkai Li, 2020. "Simple Mechanisms for Agents with Non-linear Utilities," Papers 2003.00545, arXiv.org, revised Oct 2022.
    6. Marek Pycia & Peter Troyan, 2023. "A Theory of Simplicity in Games and Mechanism Design," Econometrica, Econometric Society, vol. 91(4), pages 1495-1526, July.
    7. Chawla, Shuchi & Hartline, Jason D. & Sivan, Balasubramanian, 2019. "Optimal crowdsourcing contests," Games and Economic Behavior, Elsevier, vol. 113(C), pages 80-96.
    8. Babaioff, Moshe & Blumrosen, Liad & Roth, Aaron, 2015. "Auctions with online supply," Games and Economic Behavior, Elsevier, vol. 90(C), pages 227-246.
    9. Debasis Mishra & Kolagani Paramahamsa, 2022. "Selling to a principal and a budget-constrained agent," Discussion Papers 22-02, Indian Statistical Institute, Delhi.
    10. Sundararajan, Mukund & Yan, Qiqi, 2020. "Robust mechanisms for risk-averse sellers," Games and Economic Behavior, Elsevier, vol. 124(C), pages 644-658.
    11. L. Elisa Celis & Gregory Lewis & Markus Mobius & Hamid Nazerzadeh, 2011. "Buy-it-now or Take-a-chance: A New Pricing Mechanism for Online Advertising," Working Papers 11-21, NET Institute, revised Nov 2011.
    12. Briest, Patrick & Chawla, Shuchi & Kleinberg, Robert & Weinberg, S. Matthew, 2015. "Pricing lotteries," Journal of Economic Theory, Elsevier, vol. 156(C), pages 144-174.
    13. Hart, Sergiu & Nisan, Noam, 2019. "Selling multiple correlated goods: Revenue maximization and menu-size complexity," Journal of Economic Theory, Elsevier, vol. 183(C), pages 991-1029.
    14. Marco Battaglini & Rohit Lamba, 2012. "Optimal Dynamic Contracting," Working Papers 1431, Princeton University, Department of Economics, Econometric Research Program..
    15. Chawla, Shuchi & Malec, David & Sivan, Balasubramanian, 2015. "The power of randomness in Bayesian optimal mechanism design," Games and Economic Behavior, Elsevier, vol. 91(C), pages 297-317.
    16. Cai, Yang & Daskalakis, Constantinos, 2015. "Extreme value theorems for optimal multidimensional pricing," Games and Economic Behavior, Elsevier, vol. 92(C), pages 266-305.
    17. Chen, Xi & Diakonikolas, Ilias & Paparas, Dimitris & Sun, Xiaorui & Yannakakis, Mihalis, 2018. "The complexity of optimal multidimensional pricing for a unit-demand buyer," Games and Economic Behavior, Elsevier, vol. 110(C), pages 139-164.
    18. Li, Yunan, 2017. "Approximation in mechanism design with interdependent values," Games and Economic Behavior, Elsevier, vol. 103(C), pages 225-253.
    19. Hart, Sergiu & Nisan, Noam, 2017. "Approximate revenue maximization with multiple items," Journal of Economic Theory, Elsevier, vol. 172(C), pages 313-347.
    20. Yannai A. Gonczarowski & Nicole Immorlica & Yingkai Li & Brendan Lucier, 2021. "Revenue Maximization for Buyers with Costly Participation," Papers 2103.03980, arXiv.org, revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1807.05477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.