IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1805.09014.html
   My bibliography  Save this paper

Concentration of dynamic risk measures in a Brownian filtration

Author

Listed:
  • Ludovic Tangpi

Abstract

Motivated by liquidity risk in mathematical finance, D. Lacker introduced concentration inequalities for risk measures, i.e. upper bounds on the \emph{liquidity risk profile} of a financial loss. We derive these inequalities in the case of time-consistent dynamic risk measures when the filtration is assumed to carry a Brownian motion. The theory of backward stochastic differential equations (BSDEs) and their dual formulation plays a crucial role in our analysis. Natural by-products of concentration of risk measures are a description of the tail behavior of the financial loss and transport-type inequalities in terms of the generator of the BSDE, which in the present case can grow arbitrarily fast.

Suggested Citation

  • Ludovic Tangpi, 2018. "Concentration of dynamic risk measures in a Brownian filtration," Papers 1805.09014, arXiv.org.
  • Handle: RePEc:arx:papers:1805.09014
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1805.09014
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    2. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahlali, Khaled & Boufoussi, Brahim & Mouchtabih, Soufiane, 2019. "Transportation cost inequality for backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Calvia & Emanuela Rosazza Gianin, 2019. "Risk measures and progressive enlargement of filtration: a BSDE approach," Papers 1904.13257, arXiv.org, revised Mar 2020.
    2. Tangpi, Ludovic, 2019. "Concentration of dynamic risk measures in a Brownian filtration," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1477-1491.
    3. Yang Shen & Tak Kuen Siu, 2018. "A Risk-Based Approach for Asset Allocation with A Defaultable Share," Risks, MDPI, vol. 6(1), pages 1-27, February.
    4. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    5. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    6. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    7. Jana Bielagk & Arnaud Lionnet & Gonçalo dos Reis, 2015. "Equilibrium pricing under relative performance concerns," Working Papers hal-01245812, HAL.
    8. Nicole EL KAROUI & Claudia RAVANELLI, 2008. "Cash Sub-additive Risk Measures and Interest Rate Ambiguity," Swiss Finance Institute Research Paper Series 08-09, Swiss Finance Institute.
    9. Tomasz R. Bielecki & Igor Cialenco & Tao Chen, 2014. "Dynamic Conic Finance via Backward Stochastic Difference Equations," Papers 1412.6459, arXiv.org, revised Dec 2014.
    10. Pelsser, Antoon & Salahnejhad Ghalehjooghi, Ahmad, 2016. "Time-consistent actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 97-112.
    11. Yuan, Hongmin & Jiang, Long & Tian, Dejian, 2020. "Representation theorems for WVaR with respect to a capacity," Statistics & Probability Letters, Elsevier, vol. 158(C).
    12. Irina Penner & Anthony Réveillac, 2015. "Risk measures for processes and BSDEs," Finance and Stochastics, Springer, vol. 19(1), pages 23-66, January.
    13. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    14. Roger J. A. Laeven & Emanuela Rosazza Gianin & Marco Zullino, 2024. "Geometric BSDEs," Papers 2405.09260, arXiv.org, revised Jul 2024.
    15. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    16. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    17. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    18. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    19. Dejian Tian, 2022. "Pricing principle via Tsallis relative entropy in incomplete market," Papers 2201.05316, arXiv.org, revised Oct 2022.
    20. Alessandro Doldi & Marco Frittelli, 2020. "Conditional Systemic Risk Measures," Papers 2010.11515, arXiv.org, revised May 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1805.09014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.