IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.05002.html
   My bibliography  Save this paper

An Endogenous Mechanism of Business Cycles

Author

Listed:
  • Dimitri Kroujiline
  • Maxim Gusev
  • Dmitry Ushanov
  • Sergey V. Sharov
  • Boris Govorkov

Abstract

This paper suggests that business cycles may be a manifestation of coupled real economy and stock market dynamics and describes a mechanism that can generate economic fluctuations consistent with observed business cycles. To this end, we seek to incorporate into the macroeconomic framework a dynamic stock market model based on opinion interactions (Gusev et al., 2015). We derive this model from microfoundations, provide its empirical verification, demonstrate that it contains the efficient market as a particular regime and establish a link through which macroeconomic models can be attached for the study of real economy and stock market interaction. To examine key effects, we link it with a simple macroeconomic model (Blanchard, 1981). The coupled system generates nontrivial endogenous dynamics, which exhibit deterministic and stochastic features, producing quasiperiodic fluctuations (business cycles). We also inspect this system's behavior in the phase space. The real economy and the stock market coevolve dynamically along the path governed by a stochastically-forced dynamical system with two stable equilibria, one where the economy expands and the other where it contracts, resulting in business cycles identified as the coherence resonance phenomenon. Thus, the incorporation of stock market dynamics into the macroeconomic framework, as presented here, allows the derivation of realistic behaviors in a tractable setting.

Suggested Citation

  • Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2018. "An Endogenous Mechanism of Business Cycles," Papers 1803.05002, arXiv.org, revised Sep 2019.
  • Handle: RePEc:arx:papers:1803.05002
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.05002
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    2. Flaschel, Peter & Charpe, Matthieu & Galanis, Giorgos & Proaño, Christian R. & Veneziani, Roberto, 2018. "Macroeconomic and stock market interactions with endogenous aggregate sentiment dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 237-256.
    3. Brock, William A. & Durlauf, Steven N., 2001. "Interactions-based models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 54, pages 3297-3380, Elsevier.
    4. Nir Jaimovich & Sergio Rebelo, 2009. "Can News about the Future Drive the Business Cycle?," American Economic Review, American Economic Association, vol. 99(4), pages 1097-1118, September.
    5. Lindé, Jesper & Smets, Frank & Wouters, Rafael, 2016. "Challenges for Central Banks´ Macro Models," Working Paper Series 323, Sveriges Riksbank (Central Bank of Sweden).
    6. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2015. "Forecasting stock market returns over multiple time horizons," Papers 1508.04332, arXiv.org, revised Mar 2016.
    7. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    8. Blanchard, Olivier J, 1981. "Output, the Stock Market, and Interest Rates," American Economic Review, American Economic Association, vol. 71(1), pages 132-143, March.
    9. Giorgio Fagiolo & Andrea Roventini, 2012. "Macroeconomic Policy in DSGE and Agent-Based Models," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(5), pages 67-116.
    10. Lindé, J. & Smets, F. & Wouters, R., 2016. "Challenges for Central Banks’ Macro Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 2185-2262, Elsevier.
    11. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    12. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    13. Joseph E Stiglitz, 2018. "Where modern macroeconomics went wrong," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 34(1-2), pages 70-106.
    14. Gusev, Maxim & Kroujiline, Dimitri & Govorkov, Boris & Sharov, Sergey V. & Ushanov, Dmitry & Zhilyaev, Maxim, 2015. "Predictable markets? A news-driven model of the stock market," Algorithmic Finance, IOS Press, vol. 4(1-2), pages 5-51.
    15. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    16. Roberto Veneziani & Luca Zamparelli & Reiner Franke & Frank Westerhoff, 2017. "Taking Stock: A Rigorous Modelling Of Animal Spirits In Macroeconomics," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1152-1182, December.
    17. Benhabib, Jess & Liu, Xuewen & Wang, Pengfei, 2016. "Sentiments, financial markets, and macroeconomic fluctuations," Journal of Financial Economics, Elsevier, vol. 120(2), pages 420-443.
    18. Olivier Blanchard, 2016. "Do DSGE Models Have a Future?," Policy Briefs PB16-11, Peterson Institute for International Economics.
    19. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    20. Levy, Haim & Levy, Moshe & Solomon, Sorin, 2000. "Microscopic Simulation of Financial Markets," Elsevier Monographs, Elsevier, edition 1, number 9780124458901.
    21. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    22. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    23. Lawrence J. Christiano & Martin S. Eichenbaum & Mathias Trabandt, 2018. "On DSGE Models," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 113-140, Summer.
    24. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    25. John Y. Campbell, 2014. "Empirical Asset Pricing: Eugene Fama, Lars Peter Hansen, and Robert Shiller," Scandinavian Journal of Economics, Wiley Blackwell, vol. 116(3), pages 593-634, July.
    26. Franke, Reiner, 2014. "Aggregate sentiment dynamics: A canonical modelling approach and its pleasant nonlinearities," Structural Change and Economic Dynamics, Elsevier, vol. 31(C), pages 64-72.
    27. Franke, Reiner & Ghonghadze, Jaba, 2014. "Integrating Real Sector Growth and Inflation Into An Agent-Based Stock Market Dynamics," FinMaP-Working Papers 4, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    28. Blake LeBaron & Leigh Tesfatsion, 2008. "Modeling Macroeconomies as Open-Ended Dynamic Systems of Interacting Agents," American Economic Review, American Economic Association, vol. 98(2), pages 246-250, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karl Naumann-Woleske & Michael Benzaquen & Maxim Gusev & Dimitri Kroujiline, 2021. "Capital Demand Driven Business Cycles: Mechanism and Effects," Papers 2110.00360, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    2. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    3. Kroujiline, Dimitri & Gusev, Maxim & Ushanov, Dmitry & Sharov, Sergey V. & Govorkov, Boris, 2015. "Forecasting stock market returns over multiple time horizons," MPRA Paper 66175, University Library of Munich, Germany.
    4. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, September.
    5. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    6. Flaschel, Peter & Charpe, Matthieu & Galanis, Giorgos & Proaño, Christian R. & Veneziani, Roberto, 2018. "Macroeconomic and stock market interactions with endogenous aggregate sentiment dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 237-256.
    7. Torsten Trimborn, 2018. "A Macroscopic Portfolio Model: From Rational Agents to Bounded Rationality," Papers 1805.11036, arXiv.org, revised Oct 2018.
    8. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    9. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    10. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2011. "The dynamic behaviour of asset prices in disequilibrium: a survey," International Journal of Behavioural Accounting and Finance, Inderscience Enterprises Ltd, vol. 2(2), pages 101-139.
    11. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    12. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Karl Naumann-Woleske & Michael Benzaquen & Maxim Gusev & Dimitri Kroujiline, 2021. "Capital Demand Driven Business Cycles: Mechanism and Effects," Papers 2110.00360, arXiv.org, revised Sep 2022.
    14. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    15. Serena Sordi & Marwil J. Dávila-Fernández, 2020. "Investment behaviour and “bull & bear” dynamics: modelling real and stock market interactions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(4), pages 867-897, October.
    16. F. Cavalli & A. Naimzada & N. Pecora & M. Pireddu, 2021. "Market sentiment and heterogeneous agents in an evolutive financial model," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1189-1219, September.
    17. Noemi Schmitt & Frank Westerhoff, 2017. "Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1041-1070, November.
    18. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    19. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    20. He, Xue-Zhong & Li, Youwei & Zheng, Min, 2019. "Heterogeneous agent models in financial markets: A nonlinear dynamics approach," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 135-149.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.05002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.