IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1712.01319.html
   My bibliography  Save this paper

Multi-currency reserving for coherent risk measures

Author

Listed:
  • Saul Jacka
  • Seb Armstrong
  • Abdel Berkaoui

Abstract

We examine the problem of dynamic reserving for risk in multiple currencies under a general coherent risk measure. The reserver requires to hedge risk in a time-consistent manner by trading in baskets of currencies. We show that reserving portfolios in multiple currencies $\mathbf{V}$ are time-consistent when (and only when) a generalisation of Delbaen's m-stability condition \cite{D06}, termed optional $\V$-m-stability, holds. We prove a version of the Fundamental Theorem of Asset Pricing in this context. We show that this problem is equivalent to dynamic trading across baskets of currencies (rather than just pairwise trades) in a market with proportional transaction costs and with a frictionless final period.

Suggested Citation

  • Saul Jacka & Seb Armstrong & Abdel Berkaoui, 2017. "Multi-currency reserving for coherent risk measures," Papers 1712.01319, arXiv.org, revised Dec 2017.
  • Handle: RePEc:arx:papers:1712.01319
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1712.01319
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2016. "A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective," Papers 1603.09030, arXiv.org, revised Jan 2017.
    2. Saul Jacka & Seb Armstrong & Abdelkarem Berkaoui, 2017. "On representing and hedging claims for coherent risk measures," Papers 1703.03638, arXiv.org, revised Feb 2018.
    3. Tomasz R. Bielecki & Igor Cialenco & Rodrigo Rodriguez, 2015. "No-Arbitrage Pricing For Dividend-Paying Securities In Discrete-Time Markets With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 25(4), pages 673-701, October.
    4. Jakša Cvitanić & Ioannis Karatzas, 1996. "Hedging And Portfolio Optimization Under Transaction Costs: A Martingale Approach12," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 133-165, April.
    5. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    9. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    10. Saul Jacka & Abdelkarem Berkaoui & Jon Warren, 2008. "No arbitrage and closure results for trading cones with transaction costs," Finance and Stochastics, Springer, vol. 12(4), pages 583-600, October.
    11. Saul Jacka & Abdelkarem Berkaoui & Jon Warren, 2006. "No-arbitrage and closure results for trading cones with transaction costs," Papers math/0602178, arXiv.org, revised Apr 2008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    2. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    3. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    4. Tomasz R. Bielecki & Igor Cialenco & Shibi Feng, 2018. "A Dynamic Model of Central Counterparty Risk," Papers 1803.02012, arXiv.org.
    5. Bion-Nadal, Jocelyne, 2009. "Bid-ask dynamic pricing in financial markets with transaction costs and liquidity risk," Journal of Mathematical Economics, Elsevier, vol. 45(11), pages 738-750, December.
    6. Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
    7. Jocelyne Bion-Nadal, 2007. "Bid-Ask Dynamic Pricing in Financial Markets with Transaction Costs and Liquidity Risk," Papers math/0703074, arXiv.org.
    8. Tomasz R. Bielecki & Igor Cialenco & Shibi Feng, 2018. "A Dynamic Model Of Central Counterparty Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-34, December.
    9. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    11. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    12. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    13. Klüppelberg Claudia & Zhang Jianing, 2016. "Time-consistency of risk measures with GARCH volatilities and their estimation," Statistics & Risk Modeling, De Gruyter, vol. 32(2), pages 103-124, March.
    14. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    15. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    16. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    17. , & ,, 2015. "The Foster-Hart measure of riskiness for general gambles," Theoretical Economics, Econometric Society, vol. 10(1), January.
    18. Rosazza Gianin, Emanuela, 2006. "Risk measures via g-expectations," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 19-34, August.
    19. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    20. Claudia Kluppelberg & Jianing Zhang, 2015. "Time-consistency of risk measures with GARCH volatilities and their estimation," Papers 1504.04774, arXiv.org, revised Feb 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1712.01319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.