IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.09852.html
   My bibliography  Save this paper

Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods

Author

Listed:
  • Slobodan Milovanovi'c
  • Victor Shcherbakov

Abstract

We propose two localized Radial Basis Function (RBF) methods, the Radial Basis Function Partition of Unity method (RBF-PUM) and the Radial Basis Function generated Finite Differences method (RBF-FD), for solving financial derivative pricing problems arising from market models with multiple stochastic factors. We demonstrate the useful features of the proposed methods, such as high accuracy, sparsity of the differentiation matrices, mesh-free nature and multi-dimensional extendability, and show how to apply these methods for solving time-dependent higher-dimensional PDEs in finance. We test these methods on several problems that incorporate stochastic asset, volatility, and interest rate dynamics by conducting numerical experiments. The results illustrate the capability of both methods to solve the problems to a sufficient accuracy within reasonable time. Both methods exhibit similar orders of convergence, which can be further improved by a more elaborate choice of the method parameters. Finally, we discuss the parallelization potentials of the proposed methods and report the speedup on the example of RBF-FD.

Suggested Citation

  • Slobodan Milovanovi'c & Victor Shcherbakov, 2017. "Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods," Papers 1711.09852, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1711.09852
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.09852
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen, 2011. "Option pricing with quadratic volatility: a revisit," Finance and Stochastics, Springer, vol. 15(2), pages 191-219, June.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. A. Golbabai & E. Mohebianfar, 2017. "A New Stable Local Radial Basis Function Approach for Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 271-288, February.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. A. Itkin & V. Shcherbakov & A. Veygman, 2017. "Influence of jump-at-default in IR and FX on Quanto CDS prices," Papers 1711.07133, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    2. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    3. Lech A. Grzelak & Cornelis W. Oosterlee, 2012. "On Cross-Currency Models with Stochastic Volatility and Correlated Interest Rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 1-35, February.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    6. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    9. Carl Chiarella & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2005. "A Control Variate Method for Monte Carlo Simulations of Heath-Jarrow-Morton with Jumps," Research Paper Series 167, Quantitative Finance Research Centre, University of Technology, Sydney.
    10. Abir Sridi & Paul Bilokon, 2023. "Applying Deep Learning to Calibrate Stochastic Volatility Models," Papers 2309.07843, arXiv.org, revised Sep 2023.
    11. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    12. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    13. Lorenz Schneider & Bertrand Tavin, 2015. "Seasonal Stochastic Volatility and Correlation together with the Samuelson Effect in Commodity Futures Markets," Papers 1506.05911, arXiv.org.
    14. Li, Qian & Wang, Li, 2024. "Option pricing under jump diffusion model," Statistics & Probability Letters, Elsevier, vol. 211(C).
    15. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    16. Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
    17. repec:uts:finphd:41 is not listed on IDEAS
    18. Xiu, Dacheng, 2014. "Hermite polynomial based expansion of European option prices," Journal of Econometrics, Elsevier, vol. 179(2), pages 158-177.
    19. Lorenz Schneider & Bertrand Tavin, 2018. "Seasonal Stochastic Volatility and the Samuelson Effect in Agricultural Futures Markets," Papers 1802.01393, arXiv.org, revised Nov 2018.
    20. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    21. Chao Zheng & Jiangtao Pan, 2023. "Unbiased estimators for the Heston model with stochastic interest rates," Papers 2301.12072, arXiv.org, revised Aug 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.09852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.