IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1711.00342.html
   My bibliography  Save this paper

Orthogonal Machine Learning: Power and Limitations

Author

Listed:
  • Lester Mackey
  • Vasilis Syrgkanis
  • Ilias Zadik

Abstract

Double machine learning provides $\sqrt{n}$-consistent estimates of parameters of interest even when high-dimensional or nonparametric nuisance parameters are estimated at an $n^{-1/4}$ rate. The key is to employ Neyman-orthogonal moment equations which are first-order insensitive to perturbations in the nuisance parameters. We show that the $n^{-1/4}$ requirement can be improved to $n^{-1/(2k+2)}$ by employing a $k$-th order notion of orthogonality that grants robustness to more complex or higher-dimensional nuisance parameters. In the partially linear regression setting popular in causal inference, we show that we can construct second-order orthogonal moments if and only if the treatment residual is not normally distributed. Our proof relies on Stein's lemma and may be of independent interest. We conclude by demonstrating the robustness benefits of an explicit doubly-orthogonal estimation procedure for treatment effect.

Suggested Citation

  • Lester Mackey & Vasilis Syrgkanis & Ilias Zadik, 2017. "Orthogonal Machine Learning: Power and Limitations," Papers 1711.00342, arXiv.org, revised Aug 2018.
  • Handle: RePEc:arx:papers:1711.00342
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1711.00342
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravi Kumar & Shahin Boluki & Karl Isler & Jonas Rauch & Darius Walczak, 2022. "Machine Learning based Framework for Robust Price-Sensitivity Estimation with Application to Airline Pricing," Papers 2205.01875, arXiv.org, revised Dec 2022.
    2. Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
    3. Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Nanbo Peng & Dongdong Wang & Zhixiang Huang, 2020. "The Causal Learning of Retail Delinquency," Papers 2012.09448, arXiv.org.
    4. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    5. Krikamol Muandet & Wittawat Jitkrittum & Jonas Kubler, 2020. "Kernel Conditional Moment Test via Maximum Moment Restriction," Papers 2002.09225, arXiv.org, revised Jun 2020.
    6. Jacob Dorn & Kevin Guo & Nathan Kallus, 2021. "Doubly-Valid/Doubly-Sharp Sensitivity Analysis for Causal Inference with Unmeasured Confounding," Papers 2112.11449, arXiv.org, revised Jul 2022.
    7. Jiafeng Chen & Daniel L. Chen & Greg Lewis, 2020. "Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models," Papers 2011.06158, arXiv.org, revised Jun 2021.
    8. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    9. Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Shumin Ma & Zhiri Yuan & Dongdong Wang & Zhixiang Huang, 2022. "Robust Causal Learning for the Estimation of Average Treatment Effects," Papers 2209.01805, arXiv.org.
    10. Yiyan Huang & Cheuk Hang Leung & Qi Wu & Xing Yan, 2021. "Robust Orthogonal Machine Learning of Treatment Effects," Papers 2103.11869, arXiv.org, revised Dec 2022.
    11. Khashayar Khosravi & Greg Lewis & Vasilis Syrgkanis, 2019. "Non-Parametric Inference Adaptive to Intrinsic Dimension," Papers 1901.03719, arXiv.org, revised Jun 2019.
    12. Sookyo Jeong & Hongseok Namkoong, 2020. "Assessing External Validity Over Worst-case Subpopulations," Papers 2007.02411, arXiv.org, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    2. Alexei Alexandrov & Russell Pittman & Olga Ukhaneva, 2018. "Pricing of Complements in the U.S. Freight Railroads: Cournot Versus Coase," EAG Discussions Papers 201801, Department of Justice, Antitrust Division.
    3. Khashayar Khosravi & Greg Lewis & Vasilis Syrgkanis, 2019. "Non-Parametric Inference Adaptive to Intrinsic Dimension," Papers 1901.03719, arXiv.org, revised Jun 2019.
    4. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    5. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    6. Lauren Cappiello & Zhiwei Zhang & Changyu Shen & Neel M. Butala & Xinping Cui & Robert W. Yeh, 2021. "Adjusting for population differences using machine learning methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 750-769, June.
    7. Yan-Yu Chiou & Mei-Yuan Chen & Jau-er Chen, 2017. "Nonparametric Regression with Multiple Thresholds: Estimation and Inference," Papers 1705.09418, arXiv.org, revised Feb 2018.
    8. Jean-Pierre Dubé & Sanjog Misra, 2017. "Personalized Pricing and Consumer Welfare," NBER Working Papers 23775, National Bureau of Economic Research, Inc.
    9. Daniel L. Chen & Markus Loecher, 2022. "Mood and the Malleability of Moral Reasoning: The Impact of Irrelevant Factors on Judicial Decisions," Working Papers hal-03864854, HAL.
    10. Victor Chernozhukov & Vira Semenova, 2018. "Simultaneous inference for Best Linear Predictor of the Conditional Average Treatment Effect and other structural functions," CeMMAP working papers CWP40/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Ryo Aruga & Keiichi Goshima & Takashi Chiba, 2022. "CO2 Emissions and Corporate Performance: Japan's Evidence with Double Machine Learning," IMES Discussion Paper Series 22-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
    12. Crane-Droesch, Andrew, 2017. "Semiparametric Panel Data Using Neural Networks," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258128, Agricultural and Applied Economics Association.
    13. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
    15. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    16. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    17. Dmitry Arkhangelsky & Guido Imbens, 2018. "The Role of the Propensity Score in Fixed Effect Models," NBER Working Papers 24814, National Bureau of Economic Research, Inc.
    18. Mochen Yang & Edward McFowland & Gordon Burtch & Gediminas Adomavicius, 2022. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 138-155, October.
    19. Damian Kozbur, 2017. "Testing-Based Forward Model Selection," American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
    20. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1711.00342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.