IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1709.07682.html
   My bibliography  Save this paper

New copulas based on general partitions-of-unity and their applications to risk management (part II)

Author

Listed:
  • Dietmar Pfeifer
  • Andreas Mandle
  • Olena Ragulina

Abstract

We present a constructive and self-contained approach to data driven infinite partition-of-unity copulas that were recently introduced in the literature. In particular, we consider negative binomial and Poisson copulas and present a solution to the problem of fitting such copulas to highly asymmetric data in arbitrary dimensions.

Suggested Citation

  • Dietmar Pfeifer & Andreas Mandle & Olena Ragulina, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Papers 1709.07682, arXiv.org, revised Jan 2019.
  • Handle: RePEc:arx:papers:1709.07682
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1709.07682
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Durante, Fabrizio & Fernández-Sánchez, Juan, 2010. "Multivariate shuffles and approximation of copulas," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1827-1834, December.
    2. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    3. Durante, Fabrizio & Fernández Sánchez, Juan & Sempi, Carlo, 2013. "Multivariate patchwork copulas: A unified approach with applications to partial comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 897-905.
    4. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. André, L.M. & Wadsworth, J.L. & O'Hagan, A., 2024. "Joint modelling of the body and tail of bivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    2. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    2. Dietmar Pfeifer & Olena Ragulina, 2018. "Generating VaR Scenarios under Solvency II with Product Beta Distributions," Risks, MDPI, vol. 6(4), pages 1-15, October.
    3. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    4. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    5. Di Lascio, F. Marta L. & Giammusso, Davide & Puccetti, Giovanni, 2018. "A clustering approach and a rule of thumb for risk aggregation," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 236-248.
    6. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    7. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    8. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    9. Marius Hofert, 2020. "Implementing the Rearrangement Algorithm: An Example from Computational Risk Management," Risks, MDPI, vol. 8(2), pages 1-28, May.
    10. Yichun Chi & Zuo Quan Xu & Sheng Chao Zhuang, 2022. "Distributionally Robust Goal-Reaching Optimization in the Presence of Background Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 351-382, August.
    11. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2020. "Ordering and Inequalities for Mixtures on Risk Aggregation," Papers 2007.12338, arXiv.org, revised Jun 2021.
    12. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    13. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    14. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    15. Dietmar Pfeifer & Olena Ragulina, 2020. "Generating unfavourable VaR scenarios with patchwork copulas," Papers 2011.06281, arXiv.org, revised May 2021.
    16. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.
    17. Koch-Medina, Pablo & Munari, Cosimo & Svindland, Gregor, 2018. "Which eligible assets are compatible with comonotonic capital requirements?," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 18-26.
    18. Yuyu Chen & Peng Liu & Yang Liu & Ruodu Wang, 2022. "Ordering and inequalities for mixtures on risk aggregation," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 421-451, January.
    19. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    20. Ruodu Wang & Zuo Quan Xu & Xun Yu Zhou, 2019. "Dual utilities on risk aggregation under dependence uncertainty," Finance and Stochastics, Springer, vol. 23(4), pages 1025-1048, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1709.07682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.