IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1705.09800.html
   My bibliography  Save this paper

Growth-Optimal Portfolio Selection under CVaR Constraints

Author

Listed:
  • Guy Uziel
  • Ran El-Yaniv

Abstract

Online portfolio selection research has so far focused mainly on minimizing regret defined in terms of wealth growth. Practical financial decision making, however, is deeply concerned with both wealth and risk. We consider online learning of portfolios of stocks whose prices are governed by arbitrary (unknown) stationary and ergodic processes, where the goal is to maximize wealth while keeping the conditional value at risk (CVaR) below a desired threshold. We characterize the asymptomatically optimal risk-adjusted performance and present an investment strategy whose portfolios are guaranteed to achieve the asymptotic optimal solution while fulfilling the desired risk constraint. We also numerically demonstrate and validate the viability of our method on standard datasets.

Suggested Citation

  • Guy Uziel & Ran El-Yaniv, 2017. "Growth-Optimal Portfolio Selection under CVaR Constraints," Papers 1705.09800, arXiv.org.
  • Handle: RePEc:arx:papers:1705.09800
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1705.09800
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. László Györfi & Gábor Lugosi & Gusztáv Morvai, 1998. "A simple randomized algorithm for consistent sequential prediction of ergodic time series," Economics Working Papers 282, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Györfi László & Udina Frederic & Walk Harro, 2008. "Nonparametric nearest neighbor based empirical portfolio selection strategies," Statistics & Risk Modeling, De Gruyter, vol. 26(2), pages 145-157, March.
    4. David P. Helmbold & Robert E. Schapire & Yoram Singer & Manfred K. Warmuth, 1998. "On‐Line Portfolio Selection Using Multiplicative Updates," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 325-347, October.
    5. Bin Li & Steven C. H. Hoi, 2012. "On-Line Portfolio Selection with Moving Average Reversion," Papers 1206.4626, arXiv.org.
    6. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    7. László Györfi & Gábor Lugosi & Frederic Udina, 2006. "Nonparametric Kernel‐Based Sequential Investment Strategies," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 337-357, April.
    8. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    9. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    2. Guo, Sini & Gu, Jia-Wen & Ching, Wai-Ki, 2021. "Adaptive online portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1074-1086.
    3. Man Yiu Tsang & Tony Sit & Hoi Ying Wong, 2022. "Adaptive Robust Online Portfolio Selection," Papers 2206.01064, arXiv.org.
    4. Vajda, István & Ottucsák, György, 2006. "Empirikus portfólióstratégiák [Empirical portfolio strategies]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 624-640.
    5. Guo, Sini & Gu, Jia-Wen & Fok, Christopher H. & Ching, Wai-Ki, 2023. "Online portfolio selection with state-dependent price estimators and transaction costs," European Journal of Operational Research, Elsevier, vol. 311(1), pages 333-353.
    6. Roujia Li & Jia Liu, 2022. "Online Portfolio Selection with Long-Short Term Forecasting," SN Operations Research Forum, Springer, vol. 3(4), pages 1-15, December.
    7. Bin Li & Steven C. H. Hoi, 2012. "Online Portfolio Selection: A Survey," Papers 1212.2129, arXiv.org, revised May 2013.
    8. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    9. Jin’an He & Shicheng Yin & Fangping Peng, 2024. "Weak aggregating specialist algorithm for online portfolio selection," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2405-2434, June.
    10. Seung-Hyun Moon & Yong-Hyuk Kim & Byung-Ro Moon, 2019. "Empirical investigation of state-of-the-art mean reversion strategies for equity markets," Papers 1909.04327, arXiv.org.
    11. Yannick Armenti & Stephane Crepey & Samuel Drapeau & Antonis Papapantoleon, 2015. "Multivariate Shortfall Risk Allocation and Systemic Risk," Papers 1507.05351, arXiv.org, revised Mar 2017.
    12. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    13. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    14. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    15. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    16. Fereydooni, Ali & Barak, Sasan & Asaad Sajadi, Seyed Mehrzad, 2024. "A novel online portfolio selection approach based on pattern matching and ESG factors," Omega, Elsevier, vol. 123(C).
    17. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    18. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    19. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    20. Jun-ya Gotoh & Stan Uryasev, 2017. "Support vector machines based on convex risk functions and general norms," Annals of Operations Research, Springer, vol. 249(1), pages 301-328, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.09800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.