IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1705.02789.html
   My bibliography  Save this paper

Unspanned Stochastic Volatility in the Multi-factor CIR Model

Author

Listed:
  • Damir Filipovi'c
  • Martin Larsson
  • Francesco Statti

Abstract

Empirical evidence suggests that fixed income markets exhibit unspanned stochastic volatility (USV), that is, that one cannot fully hedge volatility risk solely using a portfolio of bonds. While [1] showed that no two-factor Cox-Ingersoll-Ross (CIR) model can exhibit USV, it has been unknown to date whether CIR models with more than two factors can exhibit USV or not. We formally review USV and relate it to bond market incompleteness. We provide necessary and sufficient conditions for a multi-factor CIR model to exhibit USV. We then construct a class of three-factor CIR models that exhibit USV. This answers in the affirmative the above previously open question. We also show that multi-factor CIR models with diagonal drift matrix cannot exhibit USV.

Suggested Citation

  • Damir Filipovi'c & Martin Larsson & Francesco Statti, 2017. "Unspanned Stochastic Volatility in the Multi-factor CIR Model," Papers 1705.02789, arXiv.org, revised Apr 2018.
  • Handle: RePEc:arx:papers:1705.02789
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1705.02789
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
    2. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    3. Damir Filipović & Martin Larsson & Anders B. Trolle, 2017. "Linear-Rational Term Structure Models," Journal of Finance, American Finance Association, vol. 72(2), pages 655-704, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiarella, Carl & Kang, Boda & Nikitopoulos, Christina Sklibosios & Tô, Thuy-Duong, 2013. "Humps in the volatility structure of the crude oil futures market: New evidence," Energy Economics, Elsevier, vol. 40(C), pages 989-1000.
    2. Damir Filipovic & Martin Larsson & Anders B. Trolle, 2018. "On the Relation Between Linearity-Generating Processes and Linear-Rational Models," Papers 1806.03153, arXiv.org.
    3. Backwell, Alex, 2021. "Unspanned stochastic volatility from an empirical and practical perspective," Journal of Banking & Finance, Elsevier, vol. 122(C).
    4. Bakshi, Gurdip & Crosby, John & Gao, Xiaohui & Hansen, Jorge W., 2023. "Treasury option returns and models with unspanned risks," Journal of Financial Economics, Elsevier, vol. 150(3).
    5. Gonzalo Cortazar & Simon Gutierrez & Hector Ortega, 2016. "Empirical Performance of Commodity Pricing Models: When is it Worthwhile to Use a Stochastic Volatility Specification?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(5), pages 457-487, May.
    6. Monfort, Alain & Pegoraro, Fulvio & Renne, Jean-Paul & Roussellet, Guillaume, 2017. "Staying at zero with affine processes: An application to term structure modelling," Journal of Econometrics, Elsevier, vol. 201(2), pages 348-366.
    7. Park, Yang-Ho, 2016. "The effects of asymmetric volatility and jumps on the pricing of VIX derivatives," Journal of Econometrics, Elsevier, vol. 192(1), pages 313-328.
    8. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    9. Max F. Schöne & Stefan Spinler, 2017. "A four-factor stochastic volatility model of commodity prices," Review of Derivatives Research, Springer, vol. 20(2), pages 135-165, July.
    10. Ruslan Bikbov & Mikhail Chernov, 2009. "Unspanned Stochastic Volatility in Affine Models: Evidence from Eurodollar Futures and Options," Management Science, INFORMS, vol. 55(8), pages 1292-1305, August.
    11. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    12. Bruno Feunou & Jean-Sébastien Fontaine & Anh Le & Christian Lundblad, 2022. "Tractable Term Structure Models," Management Science, INFORMS, vol. 68(11), pages 8411-8429, November.
    13. Carl Chiarella & Boda Kang & Christina Sklibosios Nikitopoulos & Thuy‐Duong Tô, 2016. "The Return–Volatility Relation in Commodity Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(2), pages 127-152, February.
    14. Christensen, Bent Jesper & Kjær, Mads Markvart & Veliyev, Bezirgen, 2023. "The incremental information in the yield curve about future interest rate risk," Journal of Banking & Finance, Elsevier, vol. 155(C).
    15. Anne Lundgaard Hansen, 2018. "Volatility-Induced Stationarity and Error-Correction in Macro-Finance Term Structure Modeling," Discussion Papers 18-12, University of Copenhagen. Department of Economics.
    16. Yuecai Han & Fengtong Zhang, 2024. "Pricing fixed income derivatives under a three-factor CIR model with unspanned stochastic volatility," Review of Derivatives Research, Springer, vol. 27(1), pages 37-53, April.
    17. W. Keener Hughen, 2010. "A maximal affine stochastic volatility model of oil prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(2), pages 101-133, February.
    18. Cortazar, Gonzalo & Lopez, Matias & Naranjo, Lorenzo, 2017. "A multifactor stochastic volatility model of commodity prices," Energy Economics, Elsevier, vol. 67(C), pages 182-201.
    19. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    20. Anna Cieslak & Pavol Povala, 2016. "Information in the Term Structure of Yield Curve Volatility," Journal of Finance, American Finance Association, vol. 71(3), pages 1393-1436, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1705.02789. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.