IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1702.03226.html
   My bibliography  Save this paper

An applied spatial agent-based model of administrative boundaries using SEAL

Author

Listed:
  • Bernardo Alves Furtado
  • Isaque Daniel Eberhardt Rocha

Abstract

This paper extends and adapts an existing abstract model into an empirical metropolitan region in Brazil. The model - named SEAL: a Spatial Economic Agent-based Lab - comprehends a framework to enable public policy ex-ante analysis. The aim of the model is to use official data and municipalities spatial boundaries to allow for policy experimentation. The current version considers three markets: housing, labor and goods. Families' members age, consume, join the labor market and trade houses. A single consumption tax is collected by municipalities that invest back into quality of life improvements. We test whether a single metropolitan government - which is an aggregation of municipalities - would be in the best interest of its citizens. Preliminary results for 20 simulation runs indicate that it may be the case. Future developments include improving performance to enable running of higher percentage of the population and a number of runs that make the model more robust.

Suggested Citation

  • Bernardo Alves Furtado & Isaque Daniel Eberhardt Rocha, 2017. "An applied spatial agent-based model of administrative boundaries using SEAL," Papers 1702.03226, arXiv.org, revised Mar 2017.
  • Handle: RePEc:arx:papers:1702.03226
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1702.03226
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edoardo Gaffeo & Domenico Delli Gatti & Saul Desiderio & Mauro Gallegati, 2008. "Adaptive Microfoundations for Emergent Macroeconomics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 34(4), pages 441-463.
    2. Lengnick, Matthias, 2013. "Agent-based macroeconomics: A baseline model," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 102-120.
    3. Bernardo Alves Furtado & Isaque Daniel Rocha Eberhardt, 2016. "A Simple Agent-Based Spatial Model of the Economy: Tools for Policy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-12.
    4. Dosi, Giovanni & Fagiolo, Giorgio & Napoletano, Mauro & Roventini, Andrea, 2013. "Income distribution, credit and fiscal policies in an agent-based Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1598-1625.
    5. David Colander & Roland Kupers, 2014. "Complexity and the Art of Public Policy: Solving Society’s Problems from the Bottom Up," Economics Books, Princeton University Press, edition 1, number 10207.
    6. Tatiana Filatova & Dawn C. Parker & Anne van der Veen, 2009. "Agent-Based Urban Land Markets: Agent's Pricing Behavior, Land Prices and Urban Land Use Change," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-3.
    7. Bernardo Alves Furtado & Isaque Daniel Rocha Eberhardt & Alexandre Messa, 2016. "SEAL's operating manual: a Spatially-bounded Economic Agent-based Lab," Papers 1609.03996, arXiv.org.
    8. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j0h130d0n is not listed on IDEAS
    9. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j0h130d0n is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roos, Michael W. M., 2015. "The macroeconomics of radical uncertainty," Ruhr Economic Papers 592, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    2. Furtado, Bernardo Alves & Eberhardt, Isaque Daniel Rocha, 2015. "Modelo espacial simples da economia: uma proposta teórico-metodológica [A simple spatial economic model: a proposal]," MPRA Paper 67005, University Library of Munich, Germany.
    3. Bernardo Alves Furtado, 2022. "PolicySpace2: Modeling Markets and Endogenous Public Policies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(1), pages 1-8.
    4. Özge Dilaver & Robert Calvert Jump & Paul Levine, 2018. "Agent‐Based Macroeconomics And Dynamic Stochastic General Equilibrium Models: Where Do We Go From Here?," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1134-1159, September.
    5. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    6. Orlando Gomes, 2017. "Heterogeneous wage setting and endogenous macro volatility," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 27-57, April.
    7. Francis Tseng & Fei Liu & Bernardo Alves Furtado, 2017. "Humans of Simulated New York (HOSNY): an exploratory comprehensive model of city life," Papers 1703.05240, arXiv.org, revised Mar 2017.
    8. Bernardo Alves Furtado & Isaque Daniel Rocha Eberhardt, 2016. "A Simple Agent-Based Spatial Model of the Economy: Tools for Policy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-12.
    9. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    10. Catalano, Michele & Di Guilmi, Corrado, 2019. "Uncertainty, rationality and complexity in a multi-sectoral dynamic model: The dynamic stochastic generalized aggregation approach," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 117-144.
    11. Klimek, Peter & Poledna, Sebastian & Doyne Farmer, J. & Thurner, Stefan, 2015. "To bail-out or to bail-in? Answers from an agent-based model," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 144-154.
    12. Cristiano CODAGNONE & Giovanni LIVA & Egidijus BARCEVICIUS & Gianluca MISURACA & Luka KLIMAVICIUTE & Michele BENEDETTI & Irene VANINI & Giancarlo VECCHI & Emily RYEN GLOINSON & Katherine STEWART & Sti, 2020. "Assessing the impacts of digital government transformation in the EU: Conceptual framework and empirical case studies," JRC Research Reports JRC120865, Joint Research Centre.
    13. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    14. Bargigli, Leonardo & Gallegati, Mauro & Riccetti, Luca & Russo, Alberto, 2014. "Network analysis and calibration of the “leveraged network-based financial accelerator”," Journal of Economic Behavior & Organization, Elsevier, vol. 99(C), pages 109-125.
    15. Isabelle SALLE & Marc-Alexandre SENEGAS & Murat YILDIZOGLU, 2013. "How Transparent About Its Inflation Target Should a Central Bank be? An Agent-Based Model Assessment," Cahiers du GREThA (2007-2019) 2013-24, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    16. Tommaso Ciarli & André Lorentz & Marco Valente & Maria Savona, 2019. "Structural changes and growth regimes," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 119-176, March.
    17. Jean-Philippe Bouchaud & Stanislao Gualdi & Marco Tarzia & Francesco Zamponi, 2018. "Optimal inflation target: insights from an agent-based model," Post-Print hal-01768441, HAL.
    18. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    19. Di Guilmi, Corrado & Carvalho, Laura, 2017. "The dynamics of leverage in a demand-driven model with heterogeneous firms," Journal of Economic Behavior & Organization, Elsevier, vol. 140(C), pages 70-90.
    20. Emanuele Ciola & Edoardo Gaffeo & Mauro Gallegati, 2021. "Search for Profits and Business Fluctuations: How Banks' Behaviour Explain Cycles?," Working Papers 450, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1702.03226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.