IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.04370.html
   My bibliography  Save this paper

S&P500 Forecasting and Trading using Convolution Analysis of Major Asset Classes

Author

Listed:
  • Panagiotis Papaioannou
  • Thomas Dionysopoulos
  • Dietmar Janetzko
  • Constantinos Siettos

Abstract

By monitoring the time evolution of the most liquid Futures contracts traded globally as acquired using the Bloomberg API from 03 January 2000 until 15 December 2014 we were able to forecast the S&P 500 index beating the Buy and Hold trading strategy. Our approach is based on convolution computations of 42 of the most liquid Futures contracts of four basic financial asset classes, namely, equities, bonds, commodities and foreign exchange. These key assets were selected on the basis of the global GDP ranking across countries worldwide according to the lists published by the International Monetary Fund (IMF, Report for Selected Country Groups and Subjects, 2015). The main hypothesis is that the shifts between the asset classes are smooth and are shaped by slow dynamics as trading decisions are shaped by several constraints associated with the portfolios allocation, as well as rules restrictions imposed by state financial authorities. This hypothesis is grounded on recent research based on the added value generated by diversification targets of market participants specialized on active asset management, who try to efficiently and smoothly navigate the market's volatility.

Suggested Citation

  • Panagiotis Papaioannou & Thomas Dionysopoulos & Dietmar Janetzko & Constantinos Siettos, 2016. "S&P500 Forecasting and Trading using Convolution Analysis of Major Asset Classes," Papers 1612.04370, arXiv.org.
  • Handle: RePEc:arx:papers:1612.04370
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.04370
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    2. Mr. Aasim M. Husain & Chakriya Bowman, 2004. "Forecasting Commodity Prices: Futures Versus Judgment," IMF Working Papers 2004/041, International Monetary Fund.
    3. Ricardo J. Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2008. "An Equilibrium Model of "Global Imbalances" and Low Interest Rates," American Economic Review, American Economic Association, vol. 98(1), pages 358-393, March.
    4. Groen, Jan J. J., 2000. "The monetary exchange rate model as a long-run phenomenon," Journal of International Economics, Elsevier, vol. 52(2), pages 299-319, December.
    5. Menzie D. Chinn & Guy Meredith, 2004. "Monetary Policy and Long-Horizon Uncovered Interest Parity," IMF Staff Papers, Palgrave Macmillan, vol. 51(3), pages 409-430, November.
    6. Chaboud, Alain P. & Wright, Jonathan H., 2005. "Uncovered interest parity: it works, but not for long," Journal of International Economics, Elsevier, vol. 66(2), pages 349-362, July.
    7. Carpenter, Jeffrey P, 2002. "Evolutionary Models of Bargaining: Comparing Agent-Based Computational and Analytical Approaches to Understanding Convention Evolution," Computational Economics, Springer;Society for Computational Economics, vol. 19(1), pages 25-49, February.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    10. J. M. Keynes, 1937. "The General Theory of Employment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 51(2), pages 209-223.
    11. Eakins, Stanley G. & Stansell, Stanley R., 2003. "Can value-based stock selection criteria yield superior risk-adjusted returns: an application of neural networks," International Review of Financial Analysis, Elsevier, vol. 12(1), pages 83-97.
    12. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    13. Erika Corona & Sabrina Ecca & Michele Marchesi & Alessio Setzu, 2008. "The Interplay Between Two Stock Markets and a Related Foreign Exchange Market: A Simulation Approach," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 99-119, September.
    14. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
    15. Hon, Mark T. & Strauss, Jack K. & Yong, Soo-Keong, 2007. "Deconstructing the Nasdaq bubble: A look at contagion across international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(3), pages 213-230, July.
    16. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    17. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    19. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    20. Klein, Roger W. & Bawa, Vijay S., 1977. "The effect of limited information and estimation risk on optimal portfolio diversification," Journal of Financial Economics, Elsevier, vol. 5(1), pages 89-111, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Papaioannnou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Papers 1310.5306, arXiv.org.
    2. Panagiotis Papaioannou & Lucia Russo & George Papaioannou & Constantinos Siettos, 2013. "Can social microblogging be used to forecast intraday exchange rates?," Netnomics, Springer, vol. 14(1), pages 47-68, November.
    3. Van Landschoot, Astrid, 2004. "Determinants of euro term structure of credit spreads," Working Paper Series 397, European Central Bank.
    4. Francisco Gomes & Michael Haliassos & Tarun Ramadorai, 2021. "Household Finance," Journal of Economic Literature, American Economic Association, vol. 59(3), pages 919-1000, September.
    5. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    6. Avino, Davide & Nneji, Ogonna, 2014. "Are CDS spreads predictable? An analysis of linear and non-linear forecasting models," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 262-274.
    7. Kothari, S.P. & Ramanna, Karthik & Skinner, Douglas J., 2010. "Implications for GAAP from an analysis of positive research in accounting," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 246-286, December.
    8. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    9. Wael DAMMAK, 2024. "Assessing Effect of Market Sentiment on Pricing of European Currency Options ‎," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1224-1244, June.
    10. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    11. Engel, Charles, 2014. "Exchange Rates and Interest Parity," Handbook of International Economics, in: Gopinath, G. & Helpman, . & Rogoff, K. (ed.), Handbook of International Economics, edition 1, volume 4, chapter 0, pages 453-522, Elsevier.
    12. van Landschoot, A., 2003. "The Term Structure of Credit Spreads on Euro Corporate Bonds," Other publications TiSEM f5164bb2-6597-48c4-8b44-d, Tilburg University, School of Economics and Management.
    13. Astrid Van Landschoot, 2004. "Determinants of Euro Term Structure of Credit Spreads," Working Paper Research 57, National Bank of Belgium.
    14. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    15. Zghal, Imen & Ben Hamad, Salah & Eleuch, Hichem & Nobanee, Haitham, 2020. "The effect of market sentiment and information asymmetry on option pricing," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    16. van Landschoot, A., 2003. "The Term Structure of Credit Spreads on Euro Corporate Bonds," Discussion Paper 2003-046, Tilburg University, Center for Economic Research.
    17. Alan Moreira & Tyler Muir, 2016. "Volatility Managed Portfolios," NBER Working Papers 22208, National Bureau of Economic Research, Inc.
    18. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    19. Carolina Fugazza & Massimo Guidolin & Giovanna Nicodano, 2010. "1/N and long run optimal portfolios: results for mixed asset menus," Working Papers 2010-003, Federal Reserve Bank of St. Louis.
    20. Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.04370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.