IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1611.09926.html
   My bibliography  Save this paper

Choquet integral in decision analysis - lessons from the axiomatization

Author

Listed:
  • Mikhail Timonin

Abstract

The Choquet integral is a powerful aggregation operator which lists many well-known models as its special cases. We look at these special cases and provide their axiomatic analysis. In cases where an axiomatization has been previously given in the literature, we connect the existing results with the framework that we have developed. Next we turn to the question of learning, which is especially important for the practical applications of the model. So far, learning of the Choquet integral has been mostly confined to the learning of the capacity. Such an approach requires making a powerful assumption that all dimensions (e.g. criteria) are evaluated on the same scale, which is rarely justified in practice. Too often categorical data is given arbitrary numerical labels (e.g. AHP), and numerical data is considered cardinally and ordinally commensurate, sometimes after a simple normalization. Such approaches clearly lack scientific rigour, and yet they are commonly seen in all kinds of applications. We discuss the pros and cons of making such an assumption and look at the consequences which axiomatization uniqueness results have for the learning problems. Finally, we review some of the applications of the Choquet integral in decision analysis. Apart from MCDA, which is the main area of interest for our results, we also discuss how the model can be interpreted in the social choice context. We look in detail at the state-dependent utility, and show how comonotonicity, central to the previous axiomatizations, actually implies state-independency in the Choquet integral model. We also discuss the conditions required to have a meaningful state-dependent utility representation and show the novelty of our results compared to the previous methods of building state-dependent models.

Suggested Citation

  • Mikhail Timonin, 2016. "Choquet integral in decision analysis - lessons from the axiomatization," Papers 1611.09926, arXiv.org.
  • Handle: RePEc:arx:papers:1611.09926
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1611.09926
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin W. S. Roberts, 1980. "Interpersonal Comparability and Social Choice Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(2), pages 421-439.
    2. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    3. Ben-Porath, Elchanan & Gilboa, Itzhak & Schmeidler, David, 1997. "On the Measurement of Inequality under Uncertainty," Journal of Economic Theory, Elsevier, vol. 75(1), pages 194-204, July.
    4. Itzhak Gilboa & David Schmeidler, 1992. "Additive Representation of Non-Additive Measures and the Choquet Integral," Discussion Papers 985, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    6. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    7. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    8. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    9. Hong, Chew Soo & Wakker, Peter, 1996. "The Comonotonic Sure-Thing Principle," Journal of Risk and Uncertainty, Springer, vol. 12(1), pages 5-27, January.
    10. Marichal, Jean-Luc & Roubens, Marc, 2000. "Determination of weights of interacting criteria from a reference set," European Journal of Operational Research, Elsevier, vol. 124(3), pages 641-650, August.
    11. Ovchinnikov, Sergei, 1996. "Means on ordered sets," Mathematical Social Sciences, Elsevier, vol. 32(1), pages 39-56, August.
    12. Denis Bouyssou & Thierry Marchant & Marc Pirlot, 2009. "A Conjoint Measurement Approach to the Discrete Sugeno Integral," Studies in Choice and Welfare, in: Steven J. Brams & William V. Gehrlein & Fred S. Roberts (ed.), The Mathematics of Preference, Choice and Order, pages 85-109, Springer.
    13. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    14. Karni Edi, 1993. "Subjective Expected Utility Theory with State-Dependent Preferences," Journal of Economic Theory, Elsevier, vol. 60(2), pages 428-438, August.
    15. Angilella, Silvia & Greco, Salvatore & Lamantia, Fabio & Matarazzo, Benedetto, 2004. "Assessing non-additive utility for multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 158(3), pages 734-744, November.
    16. Karni, Edi, 1993. "A Definition of Subjective Probabilities with State-Dependent Preferences," Econometrica, Econometric Society, vol. 61(1), pages 187-198, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    2. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    3. Mayag, Brice & Bouyssou, Denis, 2020. "Necessary and possible interaction between criteria in a 2-additive Choquet integral model," European Journal of Operational Research, Elsevier, vol. 283(1), pages 308-320.
    4. Silvia Angilella & Sally Giuseppe Arcidiacono & Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo, 2020. "An application of the SMAA–Choquet method to evaluate the performance of sailboats in offshore regattas," Operational Research, Springer, vol. 20(2), pages 771-793, June.
    5. Zhao Qiaojiao & Zeng Ling & Liu Jinjin, 2016. "Fuzzy Integral Multiple Criteria Decision Making Method Based on Fuzzy Preference Relation on Alternatives," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 280-290, June.
    6. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    7. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    8. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    9. Jian-Zhang Wu & Yi-Ping Zhou & Li Huang & Jun-Jie Dong, 2019. "Multicriteria Correlation Preference Information (MCCPI)-Based Ordinary Capacity Identification Method," Mathematics, MDPI, vol. 7(3), pages 1-13, March.
    10. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    11. Yehuda Izhakian, 2012. "Ambiguity Measurement," Working Papers 12-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    12. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    13. Ferreira, João J.M. & Jalali, Marjan S. & Ferreira, Fernando A.F., 2018. "Enhancing the decision-making virtuous cycle of ethical banking practices using the Choquet integral," Journal of Business Research, Elsevier, vol. 88(C), pages 492-497.
    14. Christophe Labreuche, 2018. "An axiomatization of the Choquet integral in the context of multiple criteria decision making without any commensurability assumption," Annals of Operations Research, Springer, vol. 271(2), pages 701-735, December.
    15. Siskos, Eleftherios & Burgherr, Peter, 2022. "Multicriteria decision support for the evaluation of electricity supply resilience: Exploration of interacting criteria," European Journal of Operational Research, Elsevier, vol. 298(2), pages 611-626.
    16. Pelegrina, Guilherme Dean & Duarte, Leonardo Tomazeli & Grabisch, Michel & Romano, João Marcos Travassos, 2020. "The multilinear model in multicriteria decision making: The case of 2-additive capacities and contributions to parameter identification," European Journal of Operational Research, Elsevier, vol. 282(3), pages 945-956.
    17. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    18. Volker Kuppelwieser & Fouad Ben Abdelaziz & Olfa Meddeb, 2020. "Unstable interactions in customers’ decision making: an experimental proof," Annals of Operations Research, Springer, vol. 294(1), pages 479-499, November.
    19. Mikhail Timonin, 2015. "Axiomatization of the Choquet integral for 2-dimensional heterogeneous product sets," Papers 1507.04167, arXiv.org, revised Mar 2016.
    20. Li, Jianping & Yao, Xiaoyang & Sun, Xiaolei & Wu, Dengsheng, 2018. "Determining the fuzzy measures in multiple criteria decision aiding from the tolerance perspective," European Journal of Operational Research, Elsevier, vol. 264(2), pages 428-439.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1611.09926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.