IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1610.09124.html
   My bibliography  Save this paper

Model-independent pricing with insider information: a Skorokhod embedding approach

Author

Listed:
  • Beatrice Acciaio
  • Alexander M. G. Cox
  • Martin Huesmann

Abstract

In this paper, we consider the pricing and hedging of a financial derivative for an insider trader, in a model-independent setting. In particular, we suppose that the insider wants to act in a way which is independent of any modelling assumptions, but that she observes market information in the form of the prices of vanilla call options on the asset. We also assume that both the insider's information, which takes the form of a set of impossible paths, and the payoff of the derivative are time-invariant. This setup allows us to adapt recent work of Beiglboeck, Cox and Huesmann (2016) to prove duality results and a monotonicity principle, which enables us to determine geometric properties of the optimal models. Moreover, we show that this setup is powerful, in that we are able to find analytic and numerical solutions to certain pricing and hedging problems.

Suggested Citation

  • Beatrice Acciaio & Alexander M. G. Cox & Martin Huesmann, 2016. "Model-independent pricing with insider information: a Skorokhod embedding approach," Papers 1610.09124, arXiv.org, revised Jun 2020.
  • Handle: RePEc:arx:papers:1610.09124
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1610.09124
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    2. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    3. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    2. Alexander M. G. Cox & Annemarie M. Grass, 2023. "Robust option pricing with volatility term structure -- An empirical study for variance options," Papers 2312.09201, arXiv.org.
    3. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    4. Julien Guyon & Romain Menegaux & Marcel Nutz, 2017. "Bounds for VIX futures given S&P 500 smiles," Finance and Stochastics, Springer, vol. 21(3), pages 593-630, July.
    5. Julien Guyon & Romain Menegaux & Marcel Nutz, 2016. "Bounds for VIX Futures given S&P 500 Smiles," Papers 1609.05832, arXiv.org, revised Jun 2017.
    6. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    7. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    8. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.
    9. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    10. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    11. David Hobson & Martin Klimmek, 2015. "Robust price bounds for the forward starting straddle," Finance and Stochastics, Springer, vol. 19(1), pages 189-214, January.
    12. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
    13. Erhan Bayraktar & Thomas Bernhardt, 2020. "On the Continuity of the Root Barrier," Papers 2010.14695, arXiv.org, revised Jul 2021.
    14. Yan Dolinsky & H. Soner, 2014. "Robust hedging with proportional transaction costs," Finance and Stochastics, Springer, vol. 18(2), pages 327-347, April.
    15. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    16. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.
    17. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    18. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    19. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    20. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1610.09124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.