IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1608.03636.html
   My bibliography  Save this paper

A General Framework for Pairs Trading with a Control-Theoretic Point of View

Author

Listed:
  • Atul Deshpande
  • B. Ross Barmish

Abstract

Pairs trading is a market-neutral strategy that exploits historical correlation between stocks to achieve statistical arbitrage. Existing pairs-trading algorithms in the literature require rather restrictive assumptions on the underlying stochastic stock-price processes and the so-called spread function. In contrast to existing literature, we consider an algorithm for pairs trading which requires less restrictive assumptions than heretofore considered. Since our point of view is control-theoretic in nature, the analysis and results are straightforward to follow by a non-expert in finance. To this end, we describe a general pairs-trading algorithm which allows the user to define a rather arbitrary spread function which is used in a feedback context to modify the investment levels dynamically over time. When this function, in combination with the price process, satisfies a certain mean-reversion condition, we deem the stocks to be a tradeable pair. For such a case, we prove that our control-inspired trading algorithm results in positive expected growth in account value. Finally, we describe tests of our algorithm on historical trading data by fitting stock price pairs to a popular spread function used in literature. Simulation results from these tests demonstrate robust growth while avoiding huge drawdowns.

Suggested Citation

  • Atul Deshpande & B. Ross Barmish, 2016. "A General Framework for Pairs Trading with a Control-Theoretic Point of View," Papers 1608.03636, arXiv.org.
  • Handle: RePEc:arx:papers:1608.03636
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1608.03636
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binh Do & Robert Faff, 2012. "Are Pairs Trading Profits Robust To Trading Costs?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 35(2), pages 261-287, June.
    2. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    3. Tourin, Agnès & Yan, Raphael, 2013. "Dynamic pairs trading using the stochastic control approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(10), pages 1972-1981.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuji Yamada & James A. Primbs, 2018. "Model Predictive Control for Optimal Pairs Trading Portfolio with Gross Exposure and Transaction Cost Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(1), pages 1-21, March.
    2. L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
    3. Atul Deshpande & B. Ross Barmish, 2018. "A Generalization of the Robust Positive Expectation Theorem for Stock Trading via Feedback Control," Papers 1803.04591, arXiv.org.
    4. Atul Deshpande & John A Gubner & B. Ross Barmish, 2020. "On Simultaneous Long-Short Stock Trading Controllers with Cross-Coupling," Papers 2011.09109, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    2. R. Todd Smith & Xun Xu, 2017. "A good pair: alternative pairs-trading strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 1-26, February.
    3. Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
    4. Khizar Qureshi & Tauhid Zaman, 2024. "Pairs Trading Using a Novel Graphical Matching Approach," Papers 2403.07998, arXiv.org.
    5. Bruno Breyer Caldas & João Frois Caldeira & Guilherme Vale Moura, 2016. "Is Pairs Trading Performance Sensitive To The Methodologies?: A Comparison," Anais do XLII Encontro Nacional de Economia [Proceedings of the 42nd Brazilian Economics Meeting] 130, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    6. Lei, Yaoting & Xu, Jing, 2015. "Costly arbitrage through pairs trading," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 1-19.
    7. Boming Ning & Kiseop Lee, 2024. "Advanced Statistical Arbitrage with Reinforcement Learning," Papers 2403.12180, arXiv.org.
    8. Fenghui Yu & Wai-Ki Ching & Chufang Wu & Jia-Wen Gu, 2023. "Optimal Pairs Trading Strategies: A Stochastic Mean–Variance Approach," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 36-55, January.
    9. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    10. Haipeng Xing, 2019. "A singular stochastic control approach for optimal pairs trading with proportional transaction costs," Papers 1911.10450, arXiv.org.
    11. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Boming Ning & Prakash Chakraborty & Kiseop Lee, 2023. "Optimal Entry and Exit with Signature in Statistical Arbitrage," Papers 2309.16008, arXiv.org, revised Mar 2024.
    13. Sovan Mitra & Andreas Karathanasopoulos, 2019. "Firm Value and the Impact of Operational Management," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(1), pages 61-85, March.
    14. Baiquan Ma & Robert Ślepaczuk, 2022. "The profitability of pairs trading strategies on Hong-Kong stock market: distance, cointegration, and correlation methods," Working Papers 2022-02, Faculty of Economic Sciences, University of Warsaw.
    15. Vladim'ir Hol'y & Petra Tomanov'a, 2018. "Estimation of Ornstein-Uhlenbeck Process Using Ultra-High-Frequency Data with Application to Intraday Pairs Trading Strategy," Papers 1811.09312, arXiv.org, revised Jul 2022.
    16. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    18. Quinn, Barry & Hanna, Alan & MacDonald, Fred, 2018. "Picking up the pennies in front of the bulldozer: The profitability of gilt based trading strategies," Finance Research Letters, Elsevier, vol. 27(C), pages 214-222.
    19. Zouheir Mighri & Faysal Mansouri, 2016. "Asymmetric price transmission within the Argentinean stock market: an asymmetric threshold cointegration approach," Empirical Economics, Springer, vol. 51(3), pages 1115-1149, November.
    20. Alexander Lipton & Marcos Lopez de Prado, 2020. "A closed-form solution for optimal mean-reverting trading strategies," Papers 2003.10502, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1608.03636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.