IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1607.07197.html
   My bibliography  Save this paper

On the support of extremal martingale measures with given marginals: the countable case

Author

Listed:
  • Luciano Campi
  • Claude Martini

Abstract

We investigate the supports of extremal martingale measures with pre-specified marginals in a two-period setting. First, we establish in full generality the equivalence between the extremality of a given measure $Q$ and the denseness in $L^1(Q)$ of a suitable linear subspace, which can be seen in a financial context as the set of all semi-static trading strategies. Moreover, when the supports of both marginals are countable, we focus on the slightly stronger notion of weak exact predictable representation property (henceforth, WEP) and provide two combinatorial sufficient conditions, called "2-link property" and "full erasability", on how the points in the supports are linked to each other for granting extremality. When the support of the first marginal is a finite set, we give a necessary and sufficient condition for the WEP to hold in terms of the new concepts of $2$-net and deadlock. Finally, we study the relation between cycles and extremality.

Suggested Citation

  • Luciano Campi & Claude Martini, 2016. "On the support of extremal martingale measures with given marginals: the countable case," Papers 1607.07197, arXiv.org, revised Mar 2019.
  • Handle: RePEc:arx:papers:1607.07197
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1607.07197
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beatrice Acciaio & Martin Larsson & Walter Schachermayer, 2016. "The space of outcomes of semi-static trading strategies need not be closed," Papers 1606.00631, arXiv.org.
    2. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    3. Luciano Campi, 2004. "Arbitrage and completeness in financial markets with given N-dimensional distributions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 27(1), pages 57-80, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    2. Pietro Siorpaes, 2015. "Optimal investment and price dependence in a semi-static market," Finance and Stochastics, Springer, vol. 19(1), pages 161-187, January.
    3. Julio Backhoff-Veraguas & Gudmund Pammer, 2019. "Stability of martingale optimal transport and weak optimal transport," Papers 1904.04171, arXiv.org, revised Dec 2020.
    4. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    5. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    7. Acciaio, B. & Backhoff-Veraguas, J. & Zalashko, A., 2020. "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2918-2953.
    8. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    9. Erhan Bayraktar & Christopher W. Miller, 2019. "Distribution‐constrained optimal stopping," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 368-406, January.
    10. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    11. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    12. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    13. Anton Kolotilin & Roberto Corrao & Alexander Wolitzky, 2023. "Persuasion and Matching: Optimal Productive Transport," Discussion Papers 2023-12, School of Economics, The University of New South Wales.
    14. Lim, Tongseok, 2020. "Optimal martingale transport between radially symmetric marginals in general dimensions," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 1897-1912.
    15. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.
    16. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Tightness and duality of martingale transport on the Skorokhod space," Papers 1507.01125, arXiv.org, revised Aug 2016.
    17. Ethan Anderes & Steffen Borgwardt & Jacob Miller, 2016. "Discrete Wasserstein barycenters: optimal transport for discrete data," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(2), pages 389-409, October.
    18. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    19. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    20. Ibrahim Ekren & H. Mete Soner, 2016. "Constrained Optimal Transport," Papers 1610.02940, arXiv.org, revised Sep 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1607.07197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.