IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1604.04608.html
   My bibliography  Save this paper

Super-hedging American Options with Semi-static Trading Strategies under Model Uncertainty

Author

Listed:
  • Erhan Bayraktar
  • Zhou Zhou

Abstract

We consider the super-hedging price of an American option in a discrete-time market in which stocks are available for dynamic trading and European options are available for static trading. We show that the super-hedging price $\pi$ is given by the supremum over the prices of the American option under randomized models. That is, $\pi=\sup_{(c_i,Q_i)_i}\sum_ic_i\phi^{Q_i}$, where $c_i \in \mathbb{R}_+$ and the martingale measure $Q^i$ are chosen such that $\sum_i c_i=1$ and $\sum_i c_iQ_i$ prices the European options correctly, and $\phi^{Q_i}$ is the price of the American option under the model $Q_i$. Our result generalizes the example given in ArXiv:1604.02274 that the highest model based price can be considered as a randomization over models.

Suggested Citation

  • Erhan Bayraktar & Zhou Zhou, 2016. "Super-hedging American Options with Semi-static Trading Strategies under Model Uncertainty," Papers 1604.04608, arXiv.org, revised Jun 2017.
  • Handle: RePEc:arx:papers:1604.04608
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1604.04608
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Zhou Zhou, 2015. "Arbitrage, hedging and utility maximization using semi-static trading strategies with American options," Papers 1502.06681, arXiv.org, revised Feb 2016.
    2. Erhan Bayraktar & Zhou Zhou, 2019. "No-Arbitrage and Hedging with Liquid American Options," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 468-486, May.
    3. Erhan Bayraktar & Yu-Jui Huang & Zhou Zhou, 2013. "On hedging American options under model uncertainty," Papers 1309.2982, arXiv.org, revised Apr 2015.
    4. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    5. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    6. David Hobson & Anthony Neuberger, 2016. "More on hedging American options under model uncertainty," Papers 1604.02274, arXiv.org.
    7. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Doldi & Marco Frittelli & Emanuela Rosazza Gianin, 2024. "On entropy martingale optimal transport theory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 1-42, June.
    2. Anna Aksamit & Ivan Guo & Shidan Liu & Zhou Zhou, 2021. "Superhedging duality for multi-action options under model uncertainty with information delay," Papers 2111.14502, arXiv.org, revised Nov 2023.
    3. Erhan Bayraktar & Zhou Zhou, 2019. "No-Arbitrage and Hedging with Liquid American Options," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 468-486, May.
    4. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    5. Anna Aksamit & Shuoqing Deng & Jan Obl'oj & Xiaolu Tan, 2016. "Robust pricing--hedging duality for American options in discrete time financial markets," Papers 1604.05517, arXiv.org, revised Apr 2017.
    6. Christopher W. Miller, 2016. "A Duality Result for Robust Optimization with Expectation Constraints," Papers 1610.01227, arXiv.org.
    7. Paolo Di Tella & Martin Haubold & Martin Keller-Ressel, 2017. "Semi-Static Variance-Optimal Hedging in Stochastic Volatility Models with Fourier Representation," Papers 1709.05527, arXiv.org.
    8. Valeriane Jokhadze & Wolfgang M. Schmidt, 2020. "Measuring Model Risk In Financial Risk Management And Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(02), pages 1-37, April.
    9. Tongseok Lim, 2023. "Optimal exercise decision of American options under model uncertainty," Papers 2310.14473, arXiv.org, revised Nov 2023.
    10. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    11. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Aksamit & Ivan Guo & Shidan Liu & Zhou Zhou, 2021. "Superhedging duality for multi-action options under model uncertainty with information delay," Papers 2111.14502, arXiv.org, revised Nov 2023.
    2. Cox, Alexander M.G. & Kinsley, Sam M., 2019. "Discretisation and duality of optimal Skorokhod embedding problems," Stochastic Processes and their Applications, Elsevier, vol. 129(7), pages 2376-2405.
    3. Erhan Bayraktar & Zhou Zhou, 2019. "No-Arbitrage and Hedging with Liquid American Options," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 468-486, May.
    4. Anna Aksamit & Shuoqing Deng & Jan Obl'oj & Xiaolu Tan, 2016. "Robust pricing--hedging duality for American options in discrete time financial markets," Papers 1604.05517, arXiv.org, revised Apr 2017.
    5. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    6. Tongseok Lim, 2023. "Optimal exercise decision of American options under model uncertainty," Papers 2310.14473, arXiv.org, revised Nov 2023.
    7. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    8. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    9. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    10. Yan Dolinsky & Or Zuk, 2023. "Explicit Computations for Delayed Semistatic Hedging," Papers 2308.10550, arXiv.org, revised Sep 2024.
    11. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    12. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    13. Francesca Biagini & Yinglin Zhang, 2017. "Reduced-form framework under model uncertainty," Papers 1707.04475, arXiv.org, revised Mar 2018.
    14. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    15. David Hobson & Anthony Neuberger, 2016. "More on hedging American options under model uncertainty," Papers 1604.02274, arXiv.org.
    16. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2018. "Time Consistent Stopping For The Mean-Standard Deviation Problem --- The Discrete Time Case," Papers 1802.08358, arXiv.org, revised Apr 2019.
    17. Erhan Bayraktar & Alexander Munk, 2017. "Mini-Flash Crashes, Model Risk, and Optimal Execution," Papers 1705.09827, arXiv.org, revised Aug 2018.
    18. Blanchard, Romain & Carassus, Laurence, 2020. "No-arbitrage with multiple-priors in discrete time," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 6657-6688.
    19. Erhan Bayraktar & Yuchong Zhang, 2016. "Fundamental Theorem of Asset Pricing Under Transaction Costs and Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1039-1054, August.
    20. Christa Cuchiero & Irene Klein & Josef Teichmann, 2017. "A fundamental theorem of asset pricing for continuous time large financial markets in a two filtration setting," Papers 1705.02087, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1604.04608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.