IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.03015.html
   My bibliography  Save this paper

Credit risk: Taking fluctuating asset correlations into account

Author

Listed:
  • Thilo A. Schmitt
  • Rudi Schafer
  • Thomas Guhr

Abstract

In structural credit risk models, default events and the ensuing losses are both derived from the asset values at maturity. Hence it is of utmost importance to choose a distribution for these asset values which is in accordance with empirical data. At the same time, it is desirable to still preserve some analytical tractability. We achieve both goals by putting forward an ensemble approach for the asset correlations. Consistently with the data, we view them as fluctuating quantities, for which we may choose the average correlation as homogeneous. Thereby we can reduce the number of parameters to two, the average correlation between assets and the strength of the fluctuations around this average value. Yet, the resulting asset value distribution describes the empirical data well. This allows us to derive the distribution of credit portfolio losses. With Monte-Carlo simulations for the Value at Risk and Expected Tail Loss we validate the assumptions of our approach and demonstrate the necessity of taking fluctuating correlations into account.

Suggested Citation

  • Thilo A. Schmitt & Rudi Schafer & Thomas Guhr, 2016. "Credit risk: Taking fluctuating asset correlations into account," Papers 1601.03015, arXiv.org.
  • Handle: RePEc:arx:papers:1601.03015
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.03015
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    2. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    3. Mainik, Georg & Embrechts, Paul, 2013. "Diversification in heavy-tailed portfolios: properties and pitfalls," Annals of Actuarial Science, Cambridge University Press, vol. 7(1), pages 26-45, March.
    4. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    5. John C. Hull, 2009. "The Credit Crunch of 2007: What Went Wrong? Why? What Lessons Can be Learned?," World Scientific Book Chapters, in: Douglas D Evanoff & Philipp Hartmann & George G Kaufman (ed.), The First Credit Market Turmoil Of The 21st Century Implications for Public Policy, chapter 11, pages 161-174, World Scientific Publishing Co. Pte. Ltd..
    6. Yiting Zhang & Gladys Hui Ting Lee & Jian Cheng Wong & Jun Liang Kok & Manamohan Prusty & Siew Ann Cheong, 2010. "Will the US Economy Recover in 2010? A Minimal Spanning Tree Study," Papers 1009.5800, arXiv.org, revised Dec 2010.
    7. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    8. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    9. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    10. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2551-2569, August.
    11. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    2. Andreas Mühlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Risks, MDPI, vol. 6(2), pages 1-25, April.
    3. Andreas Mühlbacher & Thomas Guhr, 2018. "Extreme Portfolio Loss Correlations in Credit Risk," Risks, MDPI, vol. 6(3), pages 1-25, July.
    4. Andreas Muhlbacher & Thomas Guhr, 2017. "Extreme portfolio loss correlations in credit risk," Papers 1706.09809, arXiv.org.
    5. Thomas Guhr & Andreas Schell, 2020. "Exact Multivariate Amplitude Distributions for Non-Stationary Gaussian or Algebraic Fluctuations of Covariances or Correlations," Papers 2011.07570, arXiv.org.
    6. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    7. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    8. Ephraim Clark & Geeta Lakshmi, 2003. "Controlling the risk: a case study of the Indian liquidity crisis 1990-92," Journal of International Development, John Wiley & Sons, Ltd., vol. 15(3), pages 285-298.
    9. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    10. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    11. Gagliardini, P. & Gourieroux, C., 2005. "Migration correlation: Definition and efficient estimation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 865-894, April.
    12. Racheva-Sarabian, Anna & Ryvkin, Dmitry & Semykina, Anastasia, 2015. "The default of special district financing: Evidence from California," Journal of Housing Economics, Elsevier, vol. 27(C), pages 37-48.
    13. Bank for International Settlements, 2011. "Portfolio and risk management for central banks and sovereign wealth funds," BIS Papers, Bank for International Settlements, number 58.
    14. Egami, Masahiko & Esteghamat, Kian, 2006. "An approximation method for analysis and valuation of credit correlation derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 341-364, February.
    15. Lei, Jin & Qiu, Jiaping & Wan, Chi & Yu, Fan, 2021. "Credit risk spillovers and cash holdings," Journal of Corporate Finance, Elsevier, vol. 68(C).
    16. Jose Giancarlo Gasha & Mr. Andre O Santos & Mr. Jorge A Chan-Lau & Mr. Carlos I. Medeiros & Mr. Marcos R Souto & Christian Capuano, 2009. "Recent Advances in Credit Risk Modeling," IMF Working Papers 2009/162, International Monetary Fund.
    17. Damiano Brigo & Marco Tarenghi, 2009. "Credit Default Swap Calibration and Equity Swap Valuation under Counterparty Risk with a Tractable Structural Model," Papers 0912.3028, arXiv.org.
    18. Marco Geidosch & Matthias Fischer, 2016. "Application of Vine Copulas to Credit Portfolio Risk Modeling," JRFM, MDPI, vol. 9(2), pages 1-15, June.
    19. Kanak Patel & Prodromos Vlamis, 2006. "An Empirical Estimation of Default Risk of the UK Real Estate Companies," The Journal of Real Estate Finance and Economics, Springer, vol. 32(1), pages 21-40, February.
    20. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2020. "Modeling CDS spreads: A comparison of some hybrid approaches," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 107-124.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.03015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.