IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1512.04714.html
   My bibliography  Save this paper

Heath-Jarrow-Morton-Musiela equation with L\'evy perturbation

Author

Listed:
  • Micha{l} Barski
  • Jerzy Zabczyk

Abstract

The paper studies the Heath-Jarrow-Morton-Musiela equation of the bond market. The equation is analyzed in weighted spaces of functions defined on $[0,+\infty)$. Sufficient conditions for local and global existence are obtained . For equation with the linear diffusion term the conditions for global existence are close to the necessary ones.

Suggested Citation

  • Micha{l} Barski & Jerzy Zabczyk, 2015. "Heath-Jarrow-Morton-Musiela equation with L\'evy perturbation," Papers 1512.04714, arXiv.org.
  • Handle: RePEc:arx:papers:1512.04714
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1512.04714
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ernst Eberlein & Sebastian Raible, 1999. "Term Structure Models Driven by General Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 9(1), pages 31-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gapeev, Pavel V., 2004. "On arbitrage and Markovian short rates in fractional bond markets," Statistics & Probability Letters, Elsevier, vol. 70(3), pages 211-222, December.
    2. Ting‐Pin Wu & Son‐Nan Chen, 2008. "Valuation of floating range notes in a LIBOR market model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 697-710, July.
    3. Ernst Eberlein & Nataliya Koval, 2006. "A cross-currency Levy market model," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 465-480.
    4. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    5. Asmerilda Hitaj & Lorenzo Mercuri & Edit Rroji, 2019. "Lévy CARMA models for shocks in mortality," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 205-227, June.
    6. Stefan Waldenberger & Wolfgang Muller, 2015. "Affine LIBOR models driven by real-valued affine processes," Papers 1503.00864, arXiv.org.
    7. Lijun Bo & Ying Jiao & Xuewei Yang, 2011. "Credit derivatives pricing with default density term structure modelled by L\'evy random fields," Papers 1112.2952, arXiv.org.
    8. Micha{l} Barski & Jerzy Zabczyk, 2015. "Forward rate models with linear volatilities," Papers 1512.05321, arXiv.org.
    9. Uwe Kuchler & Stefan Tappe, 2019. "Bilateral Gamma distributions and processes in financial mathematics," Papers 1907.09857, arXiv.org.
    10. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
    11. Cristescu, Constantin P. & Stan, Cristina & Scarlat, Eugen I. & Minea, Teofil & Cristescu, Cristina M., 2012. "Parameter motivated mutual correlation analysis: Application to the study of currency exchange rates based on intermittency parameter and Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2623-2635.
    12. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    13. Fred Espen Benth & Giulia Di Nunno & Asma Khedher & Maren Diane Schmeck, 2015. "Pricing of Spread Options on a Bivariate Jump Market and Stability to Model Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(1), pages 28-62, March.
    14. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    15. Ole Barndorff-Nielsen & Elisa Nicolato & Neil Shephard, 2002. "Some recent developments in stochastic volatility modelling," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 11-23.
    16. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," SSE/EFI Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 07 May 2002.
    17. Mancini, Cecilia & Renò, Roberto, 2011. "Threshold estimation of Markov models with jumps and interest rate modeling," Journal of Econometrics, Elsevier, vol. 160(1), pages 77-92, January.
    18. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    19. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    20. Dorje C. Brody & Lane P. Hughston & David M. Meier, 2016. "L\'evy-Vasicek Models and the Long-Bond Return Process," Papers 1608.06376, arXiv.org, revised Sep 2016.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1512.04714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.