IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1509.02686.html
   My bibliography  Save this paper

Pricing and Hedging GLWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models

Author

Listed:
  • Ludovic Goudenege
  • Andrea Molent
  • Antonino Zanette

Abstract

Valuing Guaranteed Lifelong Withdrawal Benefit (GLWB) has attracted significant attention from both the academic field and real world financial markets. As remarked by Forsyth and Vetzal the Black and Scholes framework seems to be inappropriate for such long maturity products. They propose to use a regime switching model. Alternatively, we propose here to use a stochastic volatility model (Heston model) and a Black Scholes model with stochastic interest rate (Hull White model). For this purpose we present four numerical methods for pricing GLWB variables annuities: a hybrid tree-finite difference method and a hybrid Monte Carlo method, an ADI finite difference scheme, and a standard Monte Carlo method. These methods are used to determine the no-arbitrage fee for the most popular versions of the GLWB contract, and to calculate the Greeks used in hedging. Both constant withdrawal and optimal withdrawal (including lapsation) strategies are considered. Numerical results are presented which demonstrate the sensitivity of the no-arbitrage fee to economic, contractual and longevity assumptions.

Suggested Citation

  • Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2015. "Pricing and Hedging GLWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models," Papers 1509.02686, arXiv.org.
  • Handle: RePEc:arx:papers:1509.02686
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1509.02686
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Briani & L. Caramellino & A. Zanette, 2015. "A hybrid tree/finite-difference approach for Heston-Hull-White type models," Papers 1503.03705, arXiv.org, revised Dec 2017.
    2. Bacinello, Anna Rita & Millossovich, Pietro & Olivieri, Annamaria & Pitacco, Ermanno, 2011. "Variable annuities: A unifying valuation approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 285-297.
    3. A. C. Belanger & P. A. Forsyth & G. Labahn, 2009. "Valuing the Guaranteed Minimum Death Benefit Clause with Partial Withdrawals," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 451-496.
    4. Nelson, Daniel B & Ramaswamy, Krishna, 1990. "Simple Binomial Processes as Diffusion Approximations in Financial Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 393-430.
    5. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    6. Patrice Gaillardetz & Joe Youssef Lakhmiri, 2011. "A New Premium Principle for Equity‐Indexed Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(1), pages 245-265, March.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    9. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    11. Chen, Z. & Vetzal, K. & Forsyth, P.A., 2008. "The effect of modelling parameters on the value of GMWB guarantees," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 165-173, August.
    12. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2016. "Pricing and Hedging GMWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models," Papers 1602.09078, arXiv.org, revised Mar 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2016. "Pricing and hedging GLWB in the Heston and in the Black–Scholes with stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 38-57.
    2. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2016. "Pricing and Hedging GMWB in the Heston and in the Black-Scholes with Stochastic Interest Rate Models," Papers 1602.09078, arXiv.org, revised Mar 2016.
    3. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A unified pricing of variable annuity guarantees under the optimal stochastic control framework," Papers 1605.00339, arXiv.org.
    4. Pavel V. Shevchenko & Xiaolin Luo, 2016. "A Unified Pricing of Variable Annuity Guarantees under the Optimal Stochastic Control Framework," Risks, MDPI, vol. 4(3), pages 1-31, July.
    5. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2019. "Pricing and hedging GMWB in the Heston and in the Black–Scholes with stochastic interest rate models," Computational Management Science, Springer, vol. 16(1), pages 217-248, February.
    6. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    7. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    8. Fontana, Claudio & Rotondi, Francesco, 2023. "Valuation of general GMWB annuities in a low interest rate environment," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 142-167.
    9. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    10. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    11. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    12. Hejazi, Seyed Amir & Jackson, Kenneth R., 2016. "A neural network approach to efficient valuation of large portfolios of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 169-181.
    13. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    14. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    15. Xiaolin Luo & Pavel V. Shevchenko, 2015. "Valuation of capital protection options," Papers 1508.00668, arXiv.org, revised May 2017.
    16. Luo, Xiaolin & Shevchenko, Pavel V., 2015. "Valuation of variable annuities with guaranteed minimum withdrawal and death benefits via stochastic control optimization," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 5-15.
    17. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2019. "Gaussian Process Regression for Pricing Variable Annuities with Stochastic Volatility and Interest Rate," Papers 1903.00369, arXiv.org, revised Jul 2019.
    18. Ludovic Gouden`ege & Andrea Molent & Antonino Zanette, 2018. "Computing Credit Valuation Adjustment solving coupled PIDEs in the Bates model," Papers 1809.05328, arXiv.org.
    19. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    20. Seyed Amir Hejazi & Kenneth R. Jackson, 2016. "A Neural Network Approach to Efficient Valuation of Large Portfolios of Variable Annuities," Papers 1606.07831, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1509.02686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.