IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.01660.html
   My bibliography  Save this paper

Transition from lognormal to chi-square superstatistics for financial time series

Author

Listed:
  • Dan Xu
  • Christian Beck

Abstract

Share price returns on different time scales can be well modelled by a superstatistical dynamics. Here we provide an investigation which type of superstatistics is most suitable to properly describe share price dynamics on various time scales. It is shown that while chi-square superstatistics works well on a time scale of days, on a much smaller time scale of minutes the price changes are better described by lognormal superstatistics. The system dynamics thus exhibits a transition from lognormal to chi-square superstatistics as a function of time scale. We discuss a more general model interpolating between both statistics which fits the observed data very well. We also present results on correlation functions of the extracted superstatistical volatility parameter, which exhibits exponential decay for returns on large time scales, whereas for returns on small time scales there are long-range correlations and power-law decay.

Suggested Citation

  • Dan Xu & Christian Beck, 2015. "Transition from lognormal to chi-square superstatistics for financial time series," Papers 1506.01660, arXiv.org, revised Mar 2016.
  • Handle: RePEc:arx:papers:1506.01660
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.01660
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusuke Uchiyama & Takanori Kadoya, 2018. "Superstatistics with cut-off tails for financial time series," Papers 1809.04775, arXiv.org.
    2. Kosun, Caglar & Ozdemir, Serhan, 2016. "A superstatistical model of vehicular traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 466-475.
    3. Markelov, Oleg & Nguyen Duc, Viet & Bogachev, Mikhail, 2017. "Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 48-60.
    4. Sandhya Devi, 2021. "Asymmetric Tsallis distributions for modelling financial market dynamics," Papers 2102.04532, arXiv.org.
    5. Arias-Calluari, Karina & Najafi, Morteza. N. & Harré, Michael S. & Tang, Yaoyue & Alonso-Marroquin, Fernando, 2022. "Testing stationarity of the detrended price return in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    6. Karina Arias-Calluari & Morteza. N. Najafi & Michael S. Harr'e & Fernando Alonso-Marroquin, 2019. "Stationarity of the detrended price return in stock markets," Papers 1910.01034, arXiv.org, revised Aug 2020.
    7. Geoffrey Ducournau, 2021. "Bayesian inference and superstatistics to describe long memory processes of financial time series," Papers 2105.04171, arXiv.org.
    8. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.01660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.