IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1502.00824.html
   My bibliography  Save this paper

How volatilities nonlocal in time affect the price dynamics in complex financial systems

Author

Listed:
  • Lei Tan
  • Bo Zheng
  • Jun-Jie Chen
  • Xiong-Fei Jiang

Abstract

What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.

Suggested Citation

  • Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How volatilities nonlocal in time affect the price dynamics in complex financial systems," Papers 1502.00824, arXiv.org.
  • Handle: RePEc:arx:papers:1502.00824
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1502.00824
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    2. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. T. T. Chen & B. Zheng & Y. Li & X. F. Jiang, 2017. "New approaches in agent-based modeling of complex financial systems," Papers 1703.06840, arXiv.org.
    2. Jiang, Xiong-Fei & Zheng, Bo & Ren, Fei & Qiu, Tian, 2017. "Localized motion in random matrix decomposition of complex financial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 154-161.
    3. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.
    4. Lei Tan & Jun-Jie Chen & Bo Zheng & Fang-Yan Ouyang, 2016. "Exploring Market State and Stock Interactions on the Minute Timescale," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-13, February.
    5. Chen, Ting-Ting & Zheng, Bo & Li, Yan & Jiang, Xiong-Fei, 2018. "Information driving force and its application in agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 593-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitri Kroujiline & Maxim Gusev & Dmitry Ushanov & Sergey V. Sharov & Boris Govorkov, 2016. "Forecasting stock market returns over multiple time horizons," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1695-1712, November.
    2. Lei Tan & Bo Zheng & Jun-Jie Chen & Xiong-Fei Jiang, 2015. "How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    3. Kroujiline, Dimitri & Gusev, Maxim & Ushanov, Dmitry & Sharov, Sergey V. & Govorkov, Boris, 2015. "Forecasting stock market returns over multiple time horizons," MPRA Paper 66175, University Library of Munich, Germany.
    4. Gusev, Maxim & Kroujiline, Dimitri & Govorkov, Boris & Sharov, Sergey V. & Ushanov, Dmitry & Zhilyaev, Maxim, 2014. "Predictable markets? A news-driven model of the stock market," MPRA Paper 58831, University Library of Munich, Germany.
    5. Zhang, Wei & Zhou, Zhong-Qiang & Xiong, Xiong, 2019. "Behavioral heterogeneity and excess stock price volatility in China," Finance Research Letters, Elsevier, vol. 28(C), pages 348-354.
    6. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    7. Alan Gregory, 2011. "The Expected Cost of Equity and the Expected Risk Premium in the UK," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 3(1), pages 1-26, April.
    8. Peter C.B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Testing for Multiple Bubbles," Working Papers 09-2011, Singapore Management University, School of Economics.
    9. Brian H. Boyer & Taylor D. Nadauld & Keith P. Vorkink & Michael S. Weisbach, 2023. "Discount‐Rate Risk in Private Equity: Evidence from Secondary Market Transactions," Journal of Finance, American Finance Association, vol. 78(2), pages 835-885, April.
    10. Caspi, Itamar & Graham, Meital, 2018. "Testing for bubbles in stock markets with irregular dividend distribution," Finance Research Letters, Elsevier, vol. 26(C), pages 89-94.
    11. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    12. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    13. Wong, Michael Chak-sham & Cheung, Yan-Leung, 1999. "The practice of investment management in Hong Kong: market forecasting and stock selection," Omega, Elsevier, vol. 27(4), pages 451-465, August.
    14. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    15. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    16. David G. McMillan, 2010. "Present Value Model, Bubbles and Returns Predictability: Sector‐Level Evidence," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 37(5‐6), pages 668-686, June.
    17. Hertrich Markus, 2019. "A Novel Housing Price Misalignment Indicator for Germany," German Economic Review, De Gruyter, vol. 20(4), pages 759-794, December.
    18. Vicente Esteve & Manuel Navarro-Ibáñez & María A. Prats, 2013. "The present value model of US stock prices revisited: long-run evidence with structural breaks, 1871-2010," Working Papers 04/13, Instituto Universitario de Análisis Económico y Social.
    19. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    20. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1502.00824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.