IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1412.1183.html
   My bibliography  Save this paper

Regulatory Capital Modelling for Credit Risk

Author

Listed:
  • Marek Rutkowski
  • Silvio Tarca

Abstract

The Basel II internal ratings-based (IRB) approach to capital adequacy for credit risk plays an important role in protecting the Australian banking sector against insolvency. We outline the mathematical foundations of regulatory capital for credit risk, and extend the model specification of the IRB approach to a more general setting than the usual Gaussian case. It rests on the proposition that quantiles of the distribution of conditional expectation of portfolio percentage loss may be substituted for quantiles of the portfolio loss distribution. We present a more economical proof of this proposition under weaker assumptions. Then, constructing a portfolio that is representative of credit exposures of the Australian banking sector, we measure the rate of convergence, in terms of number of obligors, of empirical loss distributions to the asymptotic (infinitely fine-grained) portfolio loss distribution. Moreover, we evaluate the sensitivity of credit risk capital to dependence structure as modelled by asset correlations and elliptical copulas. Access to internal bank data collected by the prudential regulator distinguishes our research from other empirical studies on the IRB approach.

Suggested Citation

  • Marek Rutkowski & Silvio Tarca, 2014. "Regulatory Capital Modelling for Credit Risk," Papers 1412.1183, arXiv.org, revised Jul 2016.
  • Handle: RePEc:arx:papers:1412.1183
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1412.1183
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    2. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    3. Silvio Tarca & Marek Rutkowski, 2014. "Assessing the Basel II Internal Ratings-Based Approach: Empirical Evidence from Australia," Papers 1412.0064, arXiv.org, revised Jul 2016.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Huang & Hao Zhou & Haibin Zhu, 2012. "Systemic Risk Contributions," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 55-83, October.
    2. Arturo Cortés Aguilar, 2011. "Estimación del residual de un bono respaldado por hipotecas mediante un modelo de riesgo crédito: una comparación de resultados de la teoría de cópulas y el modelo IRB de Basilea II en datos del merca," Revista de Administración, Finanzas y Economía (Journal of Management, Finance and Economics), Tecnológico de Monterrey, Campus Ciudad de México, vol. 5(1), pages 50-64.
    3. Mendicino, Caterina & Nikolov, Kalin & Ramirez, Juan-Rubio & Suarez, Javier & Supera, Dominik, 2020. "Twin defaults and bank capital requirements," Working Paper Series 2414, European Central Bank.
    4. Rainer Masera, 2014. "CRR/CRD IV: the trees and the forest," PSL Quarterly Review, Economia civile, vol. 67(271), pages 381-422.
    5. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    6. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    7. Paul Kupiec, 2007. "Financial stability and Basel II," Annals of Finance, Springer, vol. 3(1), pages 107-130, January.
    8. Rösch, Daniel & Scheule, Harald, 2009. "The Empirical Relation between Credit Quality, Recovery and Correlation," Hannover Economic Papers (HEP) dp-418, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Marc Gürtler & Dirk Heithecker, 2006. "Modellkonsistente Bestimmung des LGD im IRB-Ansatz von Basel II," Schmalenbach Journal of Business Research, Springer, vol. 58(5), pages 554-587, August.
    10. Yang, Bill Huajian, 2017. "Point-in-time PD term structure models for multi-period scenario loss projection: Methodologies and implementations for IFRS 9 ECL and CCAR stress testing," MPRA Paper 76271, University Library of Munich, Germany.
    11. Gagliardini, Patrick & Gourieroux, Christian, 2014. "Efficiency In Large Dynamic Panel Models With Common Factors," Econometric Theory, Cambridge University Press, vol. 30(5), pages 961-1020, October.
    12. Arndt Claußen & Sebastian Löhr & Daniel Rösch, 2014. "An analytical approach for systematic risk sensitivity of structured finance products," Review of Derivatives Research, Springer, vol. 17(1), pages 1-37, April.
    13. Magdalena Pisa & Dennis Bams & Christian Wolff, 2012. "Modeling default correlation in a US retail loan portfolio," LSF Research Working Paper Series 12-19, Luxembourg School of Finance, University of Luxembourg.
    14. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    15. Maclachlan, Iain C, 2007. "An empirical study of corporate bond pricing with unobserved capital structure dynamics," MPRA Paper 28416, University Library of Munich, Germany.
    16. Caballero, Diego & Lucas, André & Schwaab, Bernd & Zhang, Xin, 2020. "Risk endogeneity at the lender/investor-of-last-resort," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 283-297.
    17. Black, Lamont & Correa, Ricardo & Huang, Xin & Zhou, Hao, 2016. "The systemic risk of European banks during the financial and sovereign debt crises," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 107-125.
    18. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    19. Düllmann, Klaus & Kunisch, Michael & Küll, Jonathan, 2008. "Estimating asset correlations from stock prices or default rates: which method is superior?," Discussion Paper Series 2: Banking and Financial Studies 2008,04, Deutsche Bundesbank.
    20. World Bank Group, 2016. "Nigeria," World Bank Publications - Reports 25776, The World Bank Group.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1412.1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.