IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1411.3618.html
   My bibliography  Save this paper

A Forward Equation for Barrier Options under the Brunick&Shreve Markovian Projection

Author

Listed:
  • Ben Hambly
  • Matthieu Mariapragassam
  • Christoph Reisinger

Abstract

We derive a forward equation for arbitrage-free barrier option prices, in terms of Markovian projections of the stochastic volatility process, in continuous semi-martingale models. This provides a Dupire-type formula for the coefficient derived by Brunick and Shreve for their mimicking diffusion and can be interpreted as the canonical extension of local volatility for barrier options. Alternatively, a forward partial-integro differential equation (PIDE) is introduced which provides up-and-out call prices, under a Brunick-Shreve model, for the complete set of strikes, barriers and maturities in one solution step. Similar to the vanilla forward PDE, the above-named forward PIDE can serve as a building block for an efficient calibration routine including barrier option quotes. We provide a discretisation scheme for the PIDE as well as a numerical validation.

Suggested Citation

  • Ben Hambly & Matthieu Mariapragassam & Christoph Reisinger, 2014. "A Forward Equation for Barrier Options under the Brunick&Shreve Markovian Projection," Papers 1411.3618, arXiv.org, revised Sep 2016.
  • Handle: RePEc:arx:papers:1411.3618
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1411.3618
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Carr & John Crosby, 2010. "A class of Levy process models with almost exact calibration to both barrier and vanilla FX options," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1115-1136.
    2. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    2. Köpfer, Benedikt & Rüschendorf, Ludger, 2023. "Markov projection of semimartingales — Application to comparison results," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 361-386.
    3. Alan Bain & Matthieu Mariapragassam & Christoph Reisinger, 2019. "Calibration of Local-Stochastic and Path-Dependent Volatility Models to Vanilla and No-Touch Options," Papers 1911.00877, arXiv.org.
    4. Martin Tegner & Stephen Roberts, 2021. "A Bayesian take on option pricing with Gaussian processes," Papers 2112.03718, arXiv.org.
    5. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    6. Qiao, Huijie & Wu, Jiang-Lun, 2016. "Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 326-333.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Bain & Matthieu Mariapragassam & Christoph Reisinger, 2019. "Calibration of Local-Stochastic and Path-Dependent Volatility Models to Vanilla and No-Touch Options," Papers 1911.00877, arXiv.org.
    2. Elisa Alòs & Maria Elvira Mancino & Tai-Ho Wang, 2019. "Volatility and volatility-linked derivatives: estimation, modeling, and pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 321-349, December.
    3. Petros Dellaportas & Aleksandar Mijatovi'c, 2014. "Arbitrage-free prediction of the implied volatility smile," Papers 1407.5528, arXiv.org.
    4. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    5. Tehranchi, Michael R., 2009. "Symmetric martingales and symmetric smiles," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3785-3797, October.
    6. Anja Richter & Josef Teichmann, 2014. "Discrete Time Term Structure Theory and Consistent Recalibration Models," Papers 1409.1830, arXiv.org.
    7. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    8. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    9. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    10. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    11. Rene Carmona & Yi Ma & Sergey Nadtochiy, 2015. "Simulation of Implied Volatility Surfaces via Tangent Levy Models," Papers 1504.00334, arXiv.org.
    12. Jean Jacod & Philip Protter, 2010. "Risk-neutral compatibility with option prices," Finance and Stochastics, Springer, vol. 14(2), pages 285-315, April.
    13. Fajardo, José, 2015. "Barrier style contracts under Lévy processes: An alternative approach," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 179-187.
    14. Sai Hung Marten Ting & Christian-Oliver Ewald, 2013. "On the performance of asymptotic locally risk minimising hedges in the Heston stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 939-954, May.
    15. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    16. Fajardo, José, 2016. "Power Style Contracts Under Asymmetric Lévy Processes," MPRA Paper 71813, University Library of Munich, Germany.
    17. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    18. Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
    19. Henrik Hult & Filip Lindskog & Johan Nykvist, 2013. "A simple time-consistent model for the forward density process," Papers 1301.4869, arXiv.org.
    20. Jan Kallsen & Paul Kruhner, 2013. "On a Heath-Jarrow-Morton approach for stock options," Papers 1305.5621, arXiv.org, revised Aug 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1411.3618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.