IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v119y2016icp326-333.html
   My bibliography  Save this article

Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps

Author

Listed:
  • Qiao, Huijie
  • Wu, Jiang-Lun

Abstract

In the paper, by virtue of the Girsanov transformation, we derive a link of a class of (time-inhomogeneous) non-Lipschitz stochastic differential equations (SDEs) with jumps to a class of semi-linear partial integro-differential equations (PIDEs) of parabolic type, in such a manner that these obtained PIDEs characterize the path-independence property of the density process of Girsanov transformation for the non-Lipschitz SDEs with jumps.

Suggested Citation

  • Qiao, Huijie & Wu, Jiang-Lun, 2016. "Characterizing the path-independence of the Girsanov transformation for non-Lipschitz SDEs with jumps," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 326-333.
  • Handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:326-333
    DOI: 10.1016/j.spl.2016.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216301663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ben Hambly & Matthieu Mariapragassam & Christoph Reisinger, 2014. "A Forward Equation for Barrier Options under the Brunick&Shreve Markovian Projection," Papers 1411.3618, arXiv.org, revised Sep 2016.
    2. Ben Hambly & Matthieu Mariapragassam & Christoph Reisinger, 2016. "A forward equation for barrier options under the Brunick & Shreve Markovian projection," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 827-838, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shuaiqi, 2021. "On path-independent Girsanov transform," Applied Mathematics and Computation, Elsevier, vol. 395(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Tegner & Stephen Roberts, 2021. "A Bayesian take on option pricing with Gaussian processes," Papers 2112.03718, arXiv.org.
    2. Köpfer, Benedikt & Rüschendorf, Ludger, 2023. "Markov projection of semimartingales — Application to comparison results," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 361-386.
    3. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    4. Andrei Cozma & Christoph Reisinger, 2017. "Strong convergence rates for Euler approximations to a class of stochastic path-dependent volatility models," Papers 1706.07375, arXiv.org, revised Oct 2018.
    5. Alan Bain & Matthieu Mariapragassam & Christoph Reisinger, 2019. "Calibration of Local-Stochastic and Path-Dependent Volatility Models to Vanilla and No-Touch Options," Papers 1911.00877, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:119:y:2016:i:c:p:326-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.