IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1409.5936.html
   My bibliography  Save this paper

Bounds on Portfolio Quality

Author

Listed:
  • Steven E. Pav

Abstract

The signal-noise ratio of a portfolio of p assets, its expected return divided by its risk, is couched as an estimation problem on the sphere. When the portfolio is built using noisy data, the expected value of the signal-noise ratio is bounded from above via a Cramer-Rao bound, for the case of Gaussian returns. The bound holds for `biased' estimators, thus there appears to be no bias-variance tradeoff for the problem of maximizing the signal-noise ratio. An approximate distribution of the signal-noise ratio for the Markowitz portfolio is given, and shown to be fairly accurate via Monte Carlo simulations, for Gaussian returns as well as more exotic returns distributions. These findings imply that if the maximal population signal-noise ratio grows slower than the universe size to the 1/4 power, there may be no diversification benefit, rather expected signal-noise ratio can decrease with additional assets. As a practical matter, this may explain why the Markowitz portfolio is typically applied to small asset universes. Finally, the theorem is expanded to cover more general models of returns and trading schemes, including the conditional expectation case where mean returns are linear in some observable features, subspace constraints (i.e., dimensionality reduction), and hedging constraints.

Suggested Citation

  • Steven E. Pav, 2014. "Bounds on Portfolio Quality," Papers 1409.5936, arXiv.org.
  • Handle: RePEc:arx:papers:1409.5936
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1409.5936
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    2. Hendriks, Harrie, 1991. "A Cramér-Rao type lower bound for estimators with values in a manifold," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 245-261, August.
    3. Muller, Keith E. & Peterson, Bercedis L., 1984. "Practical methods for computing power in testing the multivariate general linear hypothesis," Computational Statistics & Data Analysis, Elsevier, vol. 2(2), pages 143-158, August.
    4. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    5. Mark Britten‐Jones, 1999. "The Sampling Error in Estimates of Mean‐Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    6. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    7. Taras Bodnar & Yarema Okhrin, 2011. "On the Product of Inverse Wishart and Normal Distributions with Applications to Discriminant Analysis and Portfolio Theory," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 311-331, June.
    8. Steven E. Pav, 2013. "Asymptotic distribution of the Markowitz portfolio," Papers 1312.0557, arXiv.org, revised Mar 2020.
    9. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven E. Pav, 2020. "Inference on Achieved Signal Noise Ratio," Papers 2005.06171, arXiv.org, revised May 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    2. Andrew Paskaramoorthy & Tim Gebbie & Terence van Zyl, 2021. "The efficient frontiers of mean-variance portfolio rules under distribution misspecification," Papers 2106.10491, arXiv.org, revised Jul 2021.
    3. Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
    4. Hjalmarsson, Erik & Manchev, Petar, 2012. "Characteristic-based mean-variance portfolio choice," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1392-1401.
    5. Degenhardt, Thomas & Auer, Benjamin R., 2018. "The “Sell in May” effect: A review and new empirical evidence," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 169-205.
    6. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    7. Kazak, Ekaterina & Pohlmeier, Winfried, 2019. "Testing out-of-sample portfolio performance," International Journal of Forecasting, Elsevier, vol. 35(2), pages 540-554.
    8. Farrukh Javed & Stepan Mazur & Erik Thorsén, 2024. "Tangency portfolio weights under a skew-normal model in small and large dimensions," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 75(7), pages 1395-1406, July.
    9. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
    10. Fletcher, Jonathan, 2018. "An empirical examination of the diversification benefits of U.K. international equity closed-end funds," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 23-34.
    11. Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
    12. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    13. Giovanni Bonaccolto & Sandra Paterlini, 2020. "Developing new portfolio strategies by aggregation," Annals of Operations Research, Springer, vol. 292(2), pages 933-971, September.
    14. Immo Stadtmüller & Benjamin R. Auer & Frank Schuhmacher, 2024. "Core-satellite investing with commodity futures momentum," Journal of Asset Management, Palgrave Macmillan, vol. 25(3), pages 261-287, May.
    15. Huang, Zhenzhen & Wei, Pengyu & Weng, Chengguo, 2024. "Tail mean-variance portfolio selection with estimation risk," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 218-234.
    16. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    17. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    18. Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02312186, HAL.
    19. Stadtmüller, Immo & Auer, Benjamin R. & Schuhmacher, Frank, 2022. "On the benefits of active stock selection strategies for diversified investors," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 342-354.
    20. Bonaccolto, Giovanni & Caporin, Massimiliano & Panzica, Roberto, 2019. "Estimation and model-based combination of causality networks among large US banks and insurance companies," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 1-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1409.5936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.