IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1404.5408.html
   My bibliography  Save this paper

Continuous time portfolio choice under monotone preferences with quadratic penalty - stochastic interest rate case

Author

Listed:
  • Jakub Trybu{l}a
  • Dariusz Zawisza

Abstract

This is a follow up of our previous paper - Trybu{\l}a and Zawisza \cite{TryZaw}, where we considered a modification of a monotone mean-variance functional in continuous time in stochastic factor model. In this article we address the problem of optimizing the mentioned functional in a market with a stochastic interest rate. We formulate it as a stochastic differential game problem and use Hamilton-Jacobi-Bellman-Isaacs equations to derive the optimal investment strategy and the value function.

Suggested Citation

  • Jakub Trybu{l}a & Dariusz Zawisza, 2014. "Continuous time portfolio choice under monotone preferences with quadratic penalty - stochastic interest rate case," Papers 1404.5408, arXiv.org.
  • Handle: RePEc:arx:papers:1404.5408
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1404.5408
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini & Marco Taboga, 2009. "Portfolio Selection With Monotone Mean‐Variance Preferences," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 487-521, July.
    2. Munk, Claus & Sørensen, Carsten, 2010. "Dynamic asset allocation with stochastic income and interest rates," Journal of Financial Economics, Elsevier, vol. 96(3), pages 433-462, June.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Michael J. Brennan & Yihong Xia, 2000. "Stochastic Interest Rates and the Bond-Stock Mix," Review of Finance, European Finance Association, vol. 4(2), pages 197-210.
    5. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    6. Tomasz R. Bielecki & Stanley Pliska & Jiongmin Yong, 2005. "Optimal Investment Decisions For A Portfolio With A Rolling Horizon Bond And A Discount Bond," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(07), pages 871-913.
    7. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    8. Christian Flor & Linda Larsen, 2014. "Robust portfolio choice with stochastic interest rates," Annals of Finance, Springer, vol. 10(2), pages 243-265, May.
    9. Hernández-Hernández, Daniel & Schied, Alexander, 2007. "A control approach to robust utility maximization with logarithmic utility and time-consistent penalties," Stochastic Processes and their Applications, Elsevier, vol. 117(8), pages 980-1000, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    2. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    3. Jakub Trybu{l}a & Dariusz Zawisza, 2014. "Continuous-Time Portfolio Choice Under Monotone Mean-Variance Preferences-Stochastic Factor Case," Papers 1403.3212, arXiv.org, revised Jan 2020.
    4. Christian Flor & Linda Larsen, 2014. "Robust portfolio choice with stochastic interest rates," Annals of Finance, Springer, vol. 10(2), pages 243-265, May.
    5. Chen, An & Vellekoop, Michel, 2017. "Optimal investment and consumption when allowing terminal debt," European Journal of Operational Research, Elsevier, vol. 258(1), pages 385-397.
    6. Julian Holzermann, 2023. "Optimal Investment with Stochastic Interest Rates and Ambiguity," Papers 2306.13343, arXiv.org, revised Oct 2023.
    7. Daniela Neykova & Marcos Escobar & Rudi Zagst, 2015. "Optimal investment in multidimensional Markov-modulated affine models," Annals of Finance, Springer, vol. 11(3), pages 503-530, November.
    8. Szymon Peszat & Dariusz Zawisza, 2020. "The investor problem based on the HJM model," Papers 2010.13915, arXiv.org, revised Dec 2021.
    9. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    10. Zeng, Yan & Li, Danping & Chen, Zheng & Yang, Zhou, 2018. "Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 70-103.
    11. He, Ying & Dyer, James S. & Butler, John C. & Jia, Jianmin, 2019. "An additive model of decision making under risk and ambiguity," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 78-92.
    12. Lin, Wen-chang & Lu, Jin-ray, 2012. "Risky asset allocation and consumption rule in the presence of background risk and insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 150-158.
    13. Koijen, R.S.J. & Nijman, T.E. & Werker, B.J.M., 2006. "Optimal Portfolio Choice with Annuitization," Discussion Paper 2006-78, Tilburg University, Center for Economic Research.
    14. Hong, Yi & Jin, Xing, 2018. "Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix," European Journal of Operational Research, Elsevier, vol. 265(1), pages 389-398.
    15. Lord Mensah, 2016. "Asset Allocation Brewed Accross African Stock Markets," Proceedings of Economics and Finance Conferences 3205757, International Institute of Social and Economic Sciences.
    16. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    17. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    18. Hübner, Georges & Lejeune, Thomas, 2021. "Mental accounts with horizon and asymmetry preferences," Economic Modelling, Elsevier, vol. 103(C).
    19. Rubtsov, Alexey & Xu, Wei & Šević, Aleksandar & Šević, Željko, 2021. "Price of climate risk hedging under uncertainty," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    20. Hui-Ju Tsai & Yangru Wu, 2015. "Optimal portfolio choice with asset return predictability and nontradable labor income," Review of Quantitative Finance and Accounting, Springer, vol. 45(1), pages 215-249, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1404.5408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.