IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1402.6760.html
   My bibliography  Save this paper

Time-Inconsistent Mean-Utility Portfolio Selection with Moving Target

Author

Listed:
  • Hanqing Jin
  • Yimin Yang

Abstract

In this paper, we solve the time inconsistent portfolio selection problem by using different utility functions with a moving target as our constraint. We solve this problem by finding an equilibrium control under the given definition as our optimal control. We firstly derive a sufficient equilibrium condition for second-order continuously differentiable utility funtions. Then we use power functions of order two, three and four in our problem and find the respective condtions for obtaining an equilibrium for our different problems. In the last part of the paper, we consider using another definition of equilibrium to solve our problem when the utility function that we use in our problem is the negative part of x and also find the condtions for obtaining an equilibrium.

Suggested Citation

  • Hanqing Jin & Yimin Yang, 2014. "Time-Inconsistent Mean-Utility Portfolio Selection with Moving Target," Papers 1402.6760, arXiv.org.
  • Handle: RePEc:arx:papers:1402.6760
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1402.6760
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2012. "Time-Inconsistent Stochastic Linear--Quadratic Control," Post-Print hal-00691816, HAL.
    2. Marie-Amélie Morlais, 2009. "Quadratic BSDEs driven by a continuous martingale and applications to the utility maximization problem," Finance and Stochastics, Springer, vol. 13(1), pages 121-150, January.
    3. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    4. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    5. Ainslie, George, 1991. "Derivation of "Rational" Economic Behavior from Hyperbolic Discount Curves," American Economic Review, American Economic Association, vol. 81(2), pages 334-340, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Hu & Hanqing Jin & Xun Yu Zhou, 2011. "Time-Inconsistent Stochastic Linear--Quadratic Control," Papers 1111.0818, arXiv.org.
    2. Marcel Nutz & Yuchong Zhang, 2019. "Conditional Optimal Stopping: A Time-Inconsistent Optimization," Papers 1901.05802, arXiv.org, revised Oct 2019.
    3. Wei, Jiaqin & Wang, Tianxiao, 2017. "Time-consistent mean–variance asset–liability management with random coefficients," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 84-96.
    4. Xiangyu Cui & Xun Li & Duan Li & Yun Shi, 2014. "Time Consistent Behavior Portfolio Policy for Dynamic Mean-Variance Formulation," Papers 1408.6070, arXiv.org, revised Aug 2015.
    5. Liyuan Wang & Zhiping Chen, 2019. "Stochastic Game Theoretic Formulation for a Multi-Period DC Pension Plan with State-Dependent Risk Aversion," Mathematics, MDPI, vol. 7(1), pages 1-16, January.
    6. Alia, Ishak & Chighoub, Farid & Sohail, Ayesha, 2016. "A characterization of equilibrium strategies in continuous-time mean–variance problems for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 212-223.
    7. Min Dai & Zuo Quan Xu & Xun Yu Zhou, 2009. "Continuous-Time Markowitz's Model with Transaction Costs," Papers 0906.0678, arXiv.org.
    8. Qinglong Zhou & Gaofeng Zong, 2016. "Time-Inconsistent Stochastic Linear-quadratic Differential Game," Papers 1607.00638, arXiv.org.
    9. Pengyu Wei & Zuo Quan Xu, 2021. "Dynamic growth-optimum portfolio choice under risk control," Papers 2112.14451, arXiv.org.
    10. Jiaqin Wei & Jianming Xia & Qian Zhao, 2024. "Time-Consistent Portfolio Selection for Rank-Dependent Utilities in an Incomplete Market," Papers 2409.19259, arXiv.org.
    11. Li, Bin & Li, Danping & Xiong, Dewen, 2016. "Alpha-robust mean-variance reinsurance-investment strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 101-123.
    12. Camilo Hern'andez & Dylan Possamai, 2020. "Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents," Papers 2002.12572, arXiv.org, revised Jul 2021.
    13. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    14. F. Cong & C. W. Oosterlee, 2017. "On Robust Multi-Period Pre-Commitment And Time-Consistent Mean-Variance Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(07), pages 1-26, November.
    15. Shi, Yun & Cui, Xiangyu & Li, Duan, 2015. "Discrete-time behavioral portfolio selection under cumulative prospect theory," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 283-302.
    16. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    17. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    18. Shuzhen Yang, 2020. "Bellman type strategy for the continuous time mean-variance model," Papers 2005.01904, arXiv.org, revised Jul 2020.
    19. Haoyang Cao & Zhengqi Wu & Renyuan Xu, 2024. "Inference of Utilities and Time Preference in Sequential Decision-Making," Papers 2405.15975, arXiv.org, revised Jun 2024.
    20. Felix Fie{ss}inger & Mitja Stadje, 2023. "Time-Consistent Asset Allocation for Risk Measures in a L\'evy Market," Papers 2305.09471, arXiv.org, revised Oct 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1402.6760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.