IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.6408.html
   My bibliography  Save this paper

Interconnected risk contributions: an heavy-tail approach to analyse US financial sectors

Author

Listed:
  • M. Bernardi
  • L. Petrella

Abstract

In this paper we consider a multivariate model-based approach to measure the dynamic evolution of tail risk interdependence among US banks, financial services and insurance sectors. To deeply investigate the risk contribution of insurers we consider separately life and non-life companies. To achieve this goal we apply the multivariate student-t Markov Switching model and the Multiple-CoVaR (CoES) risk measures introduced in Bernardi et. al. (2013b) to account for both the known stylised characteristics of the data and the contemporaneous joint distress events affecting financial sectors. Our empirical investigation finds that banks appear to be the major source of risk for all the remaining sectors, followed by the financial services and the insurance sectors, showing that insurance sector significantly contributes as well to the overall risk. Moreover, we find that the role of each sector in contributing to other sectors distress evolves over time accordingly to the current predominant financial condition, implying different interconnection strength.

Suggested Citation

  • M. Bernardi & L. Petrella, 2014. "Interconnected risk contributions: an heavy-tail approach to analyse US financial sectors," Papers 1401.6408, arXiv.org, revised Apr 2014.
  • Handle: RePEc:arx:papers:1401.6408
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.6408
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John & Amisano, Gianni, 2010. "Comparing and evaluating Bayesian predictive distributions of asset returns," International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
    2. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    3. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    4. Hua Chen & J. David Cummins & Krupa S. Viswanathan & Mary A. Weiss, 2014. "Systemic Risk and the Interconnectedness Between Banks and Insurers: An Econometric Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(3), pages 623-652, September.
    5. Gorton, Gary & Metrick, Andrew, 2012. "Securitized banking and the run on repo," Journal of Financial Economics, Elsevier, vol. 104(3), pages 425-451.
    6. Gorton, Gary & Metrick, Andrew, 2012. "Securitized banking and the run on repo," Journal of Financial Economics, Elsevier, vol. 104(3), pages 425-451.
    7. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    8. Scott E. Harrington, 2009. "The Financial Crisis, Systemic Risk, and the Future of Insurance Regulation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 785-819, December.
    9. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    10. John Geweke & Gianni Amisano, 2011. "Hierarchical Markov normal mixture models with applications to financial asset returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 1-29, January/F.
    11. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    12. Dimitrios Bisias & Mark Flood & Andrew W. Lo & Stavros Valavanis, 2012. "A Survey of Systemic Risk Analytics," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 255-296, October.
    13. N. Podlich & M. Wedow, 2013. "Are insurers SIFIs? A MGARCH model to measure interconnectedness," Applied Economics Letters, Taylor & Francis Journals, vol. 20(7), pages 677-681, May.
    14. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    15. Adams, Zeno & Füss, Roland & Gropp, Reint, 2014. "Spillover Effects among Financial Institutions: A State-Dependent Sensitivity Value-at-Risk Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(3), pages 575-598, June.
    16. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    17. Girardi, Giulio & Tolga Ergün, A., 2013. "Systemic risk measurement: Multivariate GARCH estimation of CoVaR," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3169-3180.
    18. Markose, Sheri & Giansante, Simone & Shaghaghi, Ali Rais, 2012. "‘Too interconnected to fail’ financial network of US CDS market: Topological fragility and systemic risk," Journal of Economic Behavior & Organization, Elsevier, vol. 83(3), pages 627-646.
    19. Georges Dionne (ed.), 2013. "Handbook of Insurance," Springer Books, Springer, edition 2, number 978-1-4614-0155-1, April.
    20. Nikola Tarashev & Claudio Borio & Kostas Tsatsaronis, 2010. "Attributing systemic risk to individual institutions," BIS Working Papers 308, Bank for International Settlements.
    21. Jan Bulla, 2010. "Hidden Markov models with t components. Increased persistence and other aspects," Quantitative Finance, Taylor & Francis Journals, vol. 11(3), pages 459-475.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foglia, Matteo & Angelini, Eliana, 2020. "From me to you: Measuring connectedness between Eurozone financial institutions," Research in International Business and Finance, Elsevier, vol. 54(C).
    2. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    3. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    4. Bernardi, M. & Durante, F. & Jaworski, P., 2017. "CoVaR of families of copulas," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 8-17.
    5. Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
    6. Arief Hakim & Khreshna Syuhada, 2023. "Formulating MCoVaR to Quantify Joint Transmissions of Systemic Risk across Crypto and Non-Crypto Markets: A Multivariate Copula Approach," Risks, MDPI, vol. 11(2), pages 1-45, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2017. "Multiple risk measures for multivariate dynamic heavy–tailed models," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 1-32.
    2. Martin Eling & David Antonius Pankoke, 2016. "Systemic Risk in the Insurance Sector: A Review and Directions for Future Research," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 19(2), pages 249-284, September.
    3. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    4. Silva, Walmir & Kimura, Herbert & Sobreiro, Vinicius Amorim, 2017. "An analysis of the literature on systemic financial risk: A survey," Journal of Financial Stability, Elsevier, vol. 28(C), pages 91-114.
    5. Gong, Xiao-Li & Liu, Xi-Hua & Xiong, Xiong & Zhang, Wei, 2019. "Financial systemic risk measurement based on causal network connectedness analysis," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 290-307.
    6. Reboredo, Juan C. & Ugolini, Andrea, 2015. "A vine-copula conditional value-at-risk approach to systemic sovereign debt risk for the financial sector," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 98-123.
    7. Bernal, Oscar & Gnabo, Jean-Yves & Guilmin, Grégory, 2014. "Assessing the contribution of banks, insurance and other financial services to systemic risk," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 270-287.
    8. Hossein Dastkhan, 2021. "Network‐based early warning system to predict financial crisis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 594-616, January.
    9. Dungey, Mardi & Luciani, Matteo & Veredas, David, 2018. "Systemic risk in the US: Interconnectedness as a circuit breaker," Economic Modelling, Elsevier, vol. 71(C), pages 305-315.
    10. Anna Denkowska & Stanisław Wanat, 2020. "A Tail Dependence-Based MST and Their Topological Indicators in Modeling Systemic Risk in the European Insurance Sector," Risks, MDPI, vol. 8(2), pages 1-22, April.
    11. Hai-Chuan Xu & Fredj Jawadi & Jie Zhou & Wei-Xing Zhou, 2023. "Quantifying interconnectedness and centrality ranking among financial institutions with TVP-VAR framework," Empirical Economics, Springer, vol. 65(1), pages 93-110, July.
    12. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    13. Drakos, Anastassios A. & Kouretas, Georgios P., 2015. "Bank ownership, financial segments and the measurement of systemic risk: An application of CoVaR," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 127-140.
    14. de Mendonça, Helder Ferreira & Silva, Rafael Bernardo da, 2018. "Effect of banking and macroeconomic variables on systemic risk: An application of ΔCOVAR for an emerging economy," The North American Journal of Economics and Finance, Elsevier, vol. 43(C), pages 141-157.
    15. Muzi Chen & Yuhang Wang & Boyao Wu & Difang Huang, 2024. "Dynamic Analyses of Contagion Risk and Module Evolution on the SSE A-Shares Market Based on Minimum Information Entropy," Papers 2403.19439, arXiv.org.
    16. van de Leur, Michiel C.W. & Lucas, André & Seeger, Norman J., 2017. "Network, market, and book-based systemic risk rankings," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 84-90.
    17. Berdin, Elia & Sottocornola, Matteo, 2015. "Insurance activities and systemic risk," SAFE Working Paper Series 121, Leibniz Institute for Financial Research SAFE.
    18. Morelli, David & Vioto, Davide, 2020. "Assessing the contribution of China’s financial sectors to systemic risk," Journal of Financial Stability, Elsevier, vol. 50(C).
    19. Varotto, Simone & Zhao, Lei, 2018. "Systemic risk and bank size," Journal of International Money and Finance, Elsevier, vol. 82(C), pages 45-70.
    20. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.6408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.