IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.1006.html
   My bibliography  Save this paper

Dynamic Limit Growth Indices in Discrete Time

Author

Listed:
  • Tomasz R. Bielecki
  • Igor Cialenco
  • Marcin Pitera

Abstract

We propose a new class of mappings, called Dynamic Limit Growth Indices, that are designed to measure the long-run performance of a financial portfolio in discrete time setup. We study various important properties for this new class of measures, and in particular, we provide necessary and sufficient condition for a Dynamic Limit Growth Index to be a dynamic assessment index. We also establish their connection with classical dynamic acceptability indices, and we show how to construct examples of Dynamic Limit Growth Indices using dynamic risk measures and dynamic certainty equivalents. Finally, we propose a new definition of time consistency, suitable for these indices, and we study time consistency for the most notable representative of this class -- the dynamic analog of risk sensitive criterion.

Suggested Citation

  • Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2013. "Dynamic Limit Growth Indices in Discrete Time," Papers 1312.1006, arXiv.org, revised Jul 2014.
  • Handle: RePEc:arx:papers:1312.1006
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.1006
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    3. W. H. Fleming & S. J. Sheu, 2000. "Risk‐Sensitive Control and an Optimal Investment Model," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 197-213, April.
    4. Patrick Cheridito & Tianhui Li, 2009. "Risk Measures On Orlicz Hearts," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 189-214, April.
    5. Alexander Cherny & Dilip Madan, 2009. "New Measures for Performance Evaluation," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2371-2406, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Damiano Rossello, 2022. "Performance measurement with expectiles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 343-374, June.
    2. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2014. "A unified approach to time consistency of dynamic risk measures and dynamic performance measures in discrete time," Papers 1409.7028, arXiv.org, revised Sep 2017.
    3. Alessandro Doldi & Marco Frittelli, 2021. "Real-Valued Systemic Risk Measures," Mathematics, MDPI, vol. 9(9), pages 1-24, April.
    4. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera, 2018. "A Unified Approach to Time Consistency of Dynamic Risk Measures and Dynamic Performance Measures in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 204-221, February.
    5. Bellini, Fabio & Laeven, Roger J.A. & Rosazza Gianin, Emanuela, 2021. "Dynamic robust Orlicz premia and Haezendonck–Goovaerts risk measures," European Journal of Operational Research, Elsevier, vol. 291(2), pages 438-446.
    6. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2015, January-A.
    7. Wayne King Ming Chan, 2015. "RAROC-Based Contingent Claim Valuation," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 21, July-Dece.
    8. Berend Roorda & Johannes Schumacher, 2016. "Weakly time consistent concave valuations and their dual representations," Finance and Stochastics, Springer, vol. 20(1), pages 123-151, January.
    9. Biagini, Sara & Bion-Nadal, Jocelyne, 2014. "Dynamic quasi concave performance measures," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 143-153.
    10. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    11. Fasen Vicky & Svejda Adela, 2012. "Time consistency of multi-period distortion measures," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 133-153, June.
    12. Dilip Madan, 2015. "Asset pricing theory for two price economies," Annals of Finance, Springer, vol. 11(1), pages 1-35, February.
    13. Sara Biagini & Jocelyne Bion-Nadal, 2012. "Dynamic quasi-concave performance measures," Papers 1212.3958, arXiv.org.
    14. Zang, Xin & Jiang, Fan & Xia, Chenxi & Yang, Jingping, 2024. "Random distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 51-73.
    15. Masaaki Fukasawa & Mitja Stadje, 2018. "Perfect hedging under endogenous permanent market impacts," Finance and Stochastics, Springer, vol. 22(2), pages 417-442, April.
    16. Traian A. Pirvu & Gordan Žitković, 2009. "Maximizing The Growth Rate Under Risk Constraints," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 423-455, July.
    17. Frittelli Marco & Maggis Marco, 2014. "Complete duality for quasiconvex dynamic risk measures on modules of the Lp-type," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 103-128, March.
    18. Kovacevic Raimund M., 2012. "Conditional risk and acceptability mappings as Banach-lattice valued mappings," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 1-18, March.
    19. Masaaki Fukasawa & Mitja Stadje, 2017. "Perfect hedging under endogenous permanent market impacts," Papers 1702.01385, arXiv.org.
    20. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.