IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.0283.html
   My bibliography  Save this paper

Stochastic areas of diffusions and applications in risk theory

Author

Listed:
  • Zhenyu Cui

Abstract

In this paper we study the stochastic area swept by a regular time-homogeneous diffusion till a stopping time. This unifies some recent literature in this area. Through stochastic time change we establish a link between the stochastic area and the stopping time of another associated time-homogeneous diffusion. Then we characterize the Laplace transform of the stochastic area in terms of the eigenfunctions of the associated diffusion. We also explicitly obtain the integer moments of the stochastic area in terms of scale and speed densities of the associated diffusion. Specifically we study in detail three stopping times: the first passage time to a constant level, the first drawdown time and the Azema-Yor stopping time. We also study the total occupation area of the diffusion below a constant level. We show applications of the results to a new structural model of default (Yildirim 2006), the Omega risk model of bankruptcy in risk analysis (Gerber, Shiu and Yang 2012), and a diffusion risk model with surplus-dependent tax (Albrecher and Hipp 2007, Li, Tang and Zhou 2013).

Suggested Citation

  • Zhenyu Cui, 2013. "Stochastic areas of diffusions and applications in risk theory," Papers 1312.0283, arXiv.org.
  • Handle: RePEc:arx:papers:1312.0283
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.0283
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olympia Hadjiliadis & Jan Vecer, 2006. "Drawdowns preceding rallies in the Brownian motion model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 403-409.
    2. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    3. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    4. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    5. Nicole El Karoui & Asma Meziou, 2006. "Constrained Optimization With Respect To Stochastic Dominance: Application To Portfolio Insurance," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 103-117, January.
    6. Yildirim, Yildiray, 2006. "Modeling default risk: A new structural approach," Finance Research Letters, Elsevier, vol. 3(3), pages 165-172, September.
    7. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Nguyen, Duy, 2016. "Omega diffusion risk model with surplus-dependent tax and capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 150-161.
    2. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    3. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.
    4. Vladimir Cherny & Jan Obloj, 2013. "Optimal portfolios of a long-term investor with floor or drawdown constraints," Papers 1305.6831, arXiv.org.
    5. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    6. Zied Ben-Salah & H'el`ene Gu'erin & Manuel Morales & Hassan Omidi Firouzi, 2014. "On the Depletion Problem for an Insurance Risk Process: New Non-ruin Quantities in Collective Risk Theory," Papers 1406.6952, arXiv.org.
    7. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    8. Zhenyu Cui, 2014. "Omega risk model with tax," Papers 1403.7680, arXiv.org.
    9. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    10. Yang, Hailiang, 2003. "Ruin theory in a financial corporation model with credit risk," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 135-145, August.
    11. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    12. Vladimir Petrov & Anton Golub & Richard Olsen, 2019. "Instantaneous Volatility Seasonality of High-Frequency Markets in Directional-Change Intrinsic Time," JRFM, MDPI, vol. 12(2), pages 1-31, April.
    13. Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
    14. Zhenyu Cui & Duy Nguyen, 2018. "Magnitude and Speed of Consecutive Market Crashes in a Diffusion Model," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 117-135, March.
    15. Xu, Weidong & Xu, Weijun & Li, Hongyi & Xiao, Weilin, 2012. "A jump-diffusion approach to modelling vulnerable option pricing," Finance Research Letters, Elsevier, vol. 9(1), pages 48-56.
    16. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    17. Jeremy Leake, 2003. "Credit spreads on sterling corporate bonds and the term structure of UK interest rates," Bank of England working papers 202, Bank of England.
    18. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    19. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    20. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.0283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.