IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.2676.html
   My bibliography  Save this paper

Mining the Web for the Voice of the Herd to Track Stock Market Bubbles

Author

Listed:
  • Aaron Gerow
  • Mark Keane

Abstract

We show that power-law analyses of financial commentaries from newspaper web-sites can be used to identify stock market bubbles, supplementing traditional volatility analyses. Using a four-year corpus of 17,713 online, finance-related articles (10M+ words) from the Financial Times, the New York Times, and the BBC, we show that week-to-week changes in power-law distributions reflect market movements of the Dow Jones Industrial Average (DJI), the FTSE-100, and the NIKKEI-225. Notably, the statistical regularities in language track the 2007 stock market bubble, showing emerging structure in the language of commentators, as progressively greater agreement arose in their positive perceptions of the market. Furthermore, during the bubble period, a marked divergence in positive language occurs as revealed by a Kullback-Leibler analysis.

Suggested Citation

  • Aaron Gerow & Mark Keane, 2012. "Mining the Web for the Voice of the Herd to Track Stock Market Bubbles," Papers 1212.2676, arXiv.org.
  • Handle: RePEc:arx:papers:1212.2676
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.2676
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wanfeng YAN & Ryan WOODARD & Didier SORNETTE, 2010. "Diagnosis and Prediction of Market Rebounds in Financial Markets," Swiss Finance Institute Research Paper Series 10-15, Swiss Finance Institute.
    2. Bernardo A. Huberman & Lada A. Adamic, 1999. "Growth dynamics of the World-Wide Web," Nature, Nature, vol. 401(6749), pages 131-131, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gala, Kaushik & Schwab, Andreas & Mueller, Brandon A., 2024. "Star entrepreneurs on digital platforms: Heavy-tailed performance distributions and their generative mechanisms," Journal of Business Venturing, Elsevier, vol. 39(1).
    2. Massimo Riccaboni & Alessandro Rossi & Stefano Schiavo, 2013. "Global networks of trade and bits," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 33-56, April.
    3. Alex Coad, 2010. "The Exponential Age Distribution and the Pareto Firm Size Distribution," Journal of Industry, Competition and Trade, Springer, vol. 10(3), pages 389-395, September.
    4. Liu, Wanping & Zhong, Shouming, 2018. "A novel dynamic model for web malware spreading over scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 848-863.
    5. Li, Xinna & Wu, Huaiqin & Cao, Jinde, 2023. "Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 647-668.
    6. Arenas, Alex & Diaz-Guilera, Albert & Perez, Conrad J. & Vega-Redondo, Fernando, 2002. "Self-organized criticality in evolutionary systems with local interaction," Journal of Economic Dynamics and Control, Elsevier, vol. 26(12), pages 2115-2142, October.
    7. Tang, Jinjun & Wang, Yinhai & Liu, Fang, 2013. "Characterizing traffic time series based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4192-4201.
    8. Sodam Baek & Kibae Kim & Jorn Altmann, 2014. "Role of Platform Providers in Service Networks: The Case of Salesforce.com AppExchange," TEMEP Discussion Papers 2014112, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised May 2014.
    9. Zhang, Wanli & Yang, Xinsong & Yang, Shiju & Alsaedi, Ahmed, 2021. "Finite-time and fixed-time bipartite synchronization of complex networks with signed graphs," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 319-329.
    10. Perc, Matjaž, 2007. "Effects of small-world connectivity on noise-induced temporal and spatial order in neural media," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 280-291.
    11. Yan, Wanfeng & Woodard, Ryan & Sornette, Didier, 2012. "Leverage bubble," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 180-186.
      • Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Leverage Bubble," Papers 1011.0458, arXiv.org, revised Nov 2010.
    12. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    13. Andrea Bonaccorsi & Maurizio Martinelli & Cristina Rossi & Irma Serrecchia, 2002. "Measuring and modelling Internet diffusion using second level domains: the case of Italy," LEM Papers Series 2002/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Coad, Alex, 2010. "Investigating the exponential age distribution of firms," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-30.
    15. Zhu, Sha & Bao, Haibo & Cao, Jinde, 2022. "Bipartite synchronization of coupled delayed neural networks with cooperative-competitive interaction via event-triggered control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Alexey Fomin & Andrey Korotayev & Julia Zinkina, 2016. "Negative oil price bubble is likely to burst in March - May 2016. A forecast on the basis of the law of log-periodical dynamics," Papers 1601.04341, arXiv.org.
    17. Stipic, Dorian & Bradac, Mislav & Lipic, Tomislav & Podobnik, Boris, 2021. "Effects of quarantine disobedience and mobility restrictions on COVID-19 pandemic waves in dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    18. Wang, Junjie & Zhou, Shuigeng & Guan, Jihong, 2011. "Characteristics of real futures trading networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 398-409.
    19. Nuccio Ludovico & Federica Dessi & Marino Bonaiuto, 2020. "Stakeholders Mapping for Sustainable Biofuels: An Innovative Procedure Based on Computational Text Analysis and Social Network Analysis," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    20. Wanfeng Yan & Ryan Woodard & Didier Sornette, 2014. "Inferring fundamental value and crash nonlinearity from bubble calibration," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1273-1282, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.2676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.