IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1205.0332.html
   My bibliography  Save this paper

A Comprehensive Analysis of Time Series Segmentation on the Japanese Stock Prices

Author

Listed:
  • Aki-Hiro Sato

Abstract

This study conducts a comprehensive analysis of time series segmentation on the Japanese stock prices listed on the first section of the Tokyo Stock Exchange during the period from 4 January 2000 to 30 January 2012. A recursive segmentation procedure is used under the assumption of a Gaussian mixture. The daily number of each quintile of volatilities for all the segments is investigated empirically. It is found that from June 2004 to June 2007, a large majority of stocks are stable and that from 2008 several stocks showed instability. On March 2011, the daily number of instable securities steeply increased due to societal turmoil influenced by the East Japan Great Earthquake. It is concluded that the number of stocks included in each quintile of volatilities provides useful information on macroeconomic situations.

Suggested Citation

  • Aki-Hiro Sato, 2012. "A Comprehensive Analysis of Time Series Segmentation on the Japanese Stock Prices," Papers 1205.0332, arXiv.org, revised Mar 2013.
  • Handle: RePEc:arx:papers:1205.0332
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1205.0332
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gopikrishnan, P & Plerou, V & Liu, Y & Amaral, L.A.N & Gabaix, X & Stanley, H.E, 2000. "Scaling and correlation in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 362-373.
    2. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2012. "The Japanese economy in crises: A time series segmentation study," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-81.
    3. Praetz, Peter D, 1972. "The Distribution of Share Price Changes," The Journal of Business, University of Chicago Press, vol. 45(1), pages 49-55, January.
    4. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    5. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, November.
    6. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
    2. Xia, Jianan & Shang, Pengjian & Lu, Dan & Yin, Yi, 2016. "A comprehensive segmentation analysis of crude oil market based on time irreversibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 104-114.
    3. Wang, Haifeng & Shang, Pengjian & Xia, Jianan, 2016. "Compositional segmentation and complexity measurement in stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 67-73.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aki-Hiro Sato, 2012. "Segmentation analysis on a multivariate time series of the foreign exchange rates," Papers 1205.0336, arXiv.org.
    2. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    3. Miguel A Fuentes & Austin Gerig & Javier Vicente, 2009. "Universal Behavior of Extreme Price Movements in Stock Markets," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-4, December.
    4. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    5. G. D. Gettinby & C. D. Sinclair & D. M. Power & R. A. Brown, 2004. "An Analysis of the Distribution of Extreme Share Returns in the UK from 1975 to 2000," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 607-646, June.
    6. José Santiago Fajardo Barbachan & Aquiles Rocha de Farias & José Renato Haas Ornelas, 2008. "A Goodness-of-Fit Test with Focus on Conditional Value at Risk," Brazilian Review of Finance, Brazilian Society of Finance, vol. 6(2), pages 139-155.
    7. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    8. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    9. Fong, Wai Mun, 1997. "Robust beta estimation: Some empirical evidence," Review of Financial Economics, Elsevier, vol. 6(2), pages 167-186.
    10. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    11. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    12. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    13. Maria S. Heracleous, 2007. "Sample Kurtosis, GARCH-t and the Degrees of Freedom Issue," Economics Working Papers ECO2007/60, European University Institute.
    14. Peter Praetz & Michael Naphtali & John Nolan, 1975. "A Test of the Efficient Market Theory Using Filter Tests on Stock Prices," The Economic Record, The Economic Society of Australia, vol. 51(1), pages 66-72, March.
    15. Hua, Jia-Chen & Chen, Lijian & Falcon, Liberty & McCauley, Joseph L. & Gunaratne, Gemunu H., 2015. "Variable diffusion in stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 221-233.
    16. Danilo Delpini & Giacomo Bormetti, 2012. "Stochastic Volatility with Heterogeneous Time Scales," Papers 1206.0026, arXiv.org, revised Apr 2013.
    17. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    18. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    19. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    20. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1205.0332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.