IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.2817.html
   My bibliography  Save this paper

On the concentration of large deviations for fat tailed distributions, with application to financial data

Author

Listed:
  • Mario Filiasi
  • Giacomo Livan
  • Matteo Marsili
  • Maria Peressi
  • Erik Vesselli
  • Elia Zarinelli

Abstract

Large deviations for fat tailed distributions, i.e. those that decay slower than exponential, are not only relatively likely, but they also occur in a rather peculiar way where a finite fraction of the whole sample deviation is concentrated on a single variable. The regime of large deviations is separated from the regime of typical fluctuations by a phase transition where the symmetry between the points in the sample is spontaneously broken. For stochastic processes with a fat tailed microscopic noise, this implies that while typical realizations are well described by a diffusion process with continuous sample paths, large deviation paths are typically discontinuous. For eigenvalues of random matrices with fat tailed distributed elements, a large deviation where the trace of the matrix is anomalously large concentrates on just a single eigenvalue, whereas in the thin tailed world the large deviation affects the whole distribution. These results find a natural application to finance. Since the price dynamics of financial stocks is characterized by fat tailed increments, large fluctuations of stock prices are expected to be realized by discrete jumps. Interestingly, we find that large excursions of prices are more likely realized by continuous drifts rather than by discontinuous jumps. Indeed, auto-correlations suppress the concentration of large deviations. Financial covariance matrices also exhibit an anomalously large eigenvalue, the market mode, as compared to the prediction of random matrix theory. We show that this is explained by a large deviation with excess covariance rather than by one with excess volatility.

Suggested Citation

  • Mario Filiasi & Giacomo Livan & Matteo Marsili & Maria Peressi & Erik Vesselli & Elia Zarinelli, 2012. "On the concentration of large deviations for fat tailed distributions, with application to financial data," Papers 1201.2817, arXiv.org, revised Jun 2014.
  • Handle: RePEc:arx:papers:1201.2817
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.2817
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aur'elien Hazan, 2017. "Stock-flow consistent macroeconomic model with nonuniform distributional constraint," Papers 1708.00645, arXiv.org.
    2. Sergey Bredikhin & Jonathan Linton & Thais Matoszko, 2017. "Why and How the Value of Science-Based Firms Violates Financial Theory: Implications for Policy and Governance," Foresight-Russia Форсайт, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 11(1 (eng)), pages 24-30.
    3. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    2. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    5. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    6. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    7. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    8. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    9. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    11. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    12. Denis Phan, 2006. "Discrete Choices under Social Influence:Generic Properties," Post-Print halshs-00105857, HAL.
    13. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    14. Dibeh, Ghassan, 2007. "Contagion effects in a chartist–fundamentalist model with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 52-57.
    15. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    16. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    17. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    18. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    19. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    20. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.2817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.