IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.2616.html
   My bibliography  Save this paper

The Impact of the Prior Density on a Minimum Relative Entropy Density: A Case Study with SPX Option Data

Author

Listed:
  • C. Neri

    (Lloyds Banking Group, London, UK)

  • L. Schneider

    (EMLYON Business School, Lyon, France)

Abstract

We study the problem of finding probability densities that match given European call option prices. To allow prior information about such a density to be taken into account, we generalise the algorithm presented in Neri and Schneider (2011) to find the maximum entropy density of an asset price to the relative entropy case. This is applied to study the impact the choice of prior density has in two market scenarios. In the first scenario, call option prices are prescribed at only a small number of strikes, and we see that the choice of prior, or indeed its omission, yields notably different densities. The second scenario is given by CBOE option price data for S&P500 index options at a large number of strikes. Prior information is now considered to be given by calibrated Heston, Schoebel-Zhu or Variance Gamma models. We find that the resulting digital option prices are essentially the same as those given by the (non-relative) Buchen-Kelly density itself. In other words, in a sufficiently liquid market the influence of the prior density seems to vanish almost completely. Finally, we study variance swaps and derive a simple formula relating the fair variance swap rate to entropy. Then we show, again, that the prior loses its influence on the fair variance swap rate as the number of strikes increases.

Suggested Citation

  • C. Neri & L. Schneider, 2012. "The Impact of the Prior Density on a Minimum Relative Entropy Density: A Case Study with SPX Option Data," Papers 1201.2616, arXiv.org, revised Sep 2013.
  • Handle: RePEc:arx:papers:1201.2616
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.2616
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Cassio Neri & Lorenz Schneider, 2013. "A Family of Maximum Entropy Densities Matching Call Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(6), pages 548-577, December.
    5. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    6. Cassio Neri & Lorenz Schneider, 2011. "A Family of Maximum Entropy Densities Matching Call Option Prices," Papers 1102.0224, arXiv.org.
    7. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    8. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    9. Dorje Brody & Ian Buckley & Bernhard Meister, 2004. "Preposterior analysis for option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 465-477.
    10. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Les Gulko, 1999. "The Entropic Market Hypothesis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 293-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, In Joon & Kim, Sol, 2004. "Empirical comparison of alternative stochastic volatility option pricing models: Evidence from Korean KOSPI 200 index options market," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 117-142, April.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    4. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    5. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    6. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    7. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    8. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    9. Kotchoni, Rachidi, 2012. "Applications of the characteristic function-based continuum GMM in finance," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3599-3622.
    10. Zafar Ahmad & Reilly Browne & Rezaul Chowdhury & Rathish Das & Yushen Huang & Yimin Zhu, 2023. "Fast American Option Pricing using Nonlinear Stencils," Papers 2303.02317, arXiv.org, revised Oct 2023.
    11. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    12. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    13. Cassio Neri & Lorenz Schneider, 2012. "Maximum entropy distributions inferred from option portfolios on an asset," Finance and Stochastics, Springer, vol. 16(2), pages 293-318, April.
    14. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    15. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    16. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    17. Timothy Sharp & Steven Li & David Allen, 2010. "Empirical performance of affine option pricing models: evidence from the Australian index options market," Applied Financial Economics, Taylor & Francis Journals, vol. 20(6), pages 501-514.
    18. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    19. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, October.
    20. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.2616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.