IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1108.1688.html
   My bibliography  Save this paper

Fast resolution of a single factor Heath-Jarrow-Morton model with stochastic volatility

Author

Listed:
  • Eusebio Valero
  • Manuel Torrealba
  • Lucas Lacasa
  • Franc{c}ois Fraysse

Abstract

This paper considers the single factor Heath-Jarrow-Morton model for the interest rate curve with stochastic volatility. Its natural formulation, described in terms of stochastic differential equations, is solved through Monte Carlo simulations, that usually involve rather large computation time, inefficient from a practical (financial) perspective. This model turns to be Markovian in three dimensions and therefore it can be mapped into a 3D partial differential equations problem. We propose an optimized numerical method to solve the 3D PDE model in both low computation time and reasonable accuracy, a fundamental criterion for practical purposes. The spatial and temporal discretization are performed using finite-difference and Crank-Nicholson schemes respectively, and the computational efficiency is largely increased performing a scale analysis and using Alternating Direction Implicit schemes. Several numerical considerations such as convergence criteria or computation time are analyzed and discussed.

Suggested Citation

  • Eusebio Valero & Manuel Torrealba & Lucas Lacasa & Franc{c}ois Fraysse, 2011. "Fast resolution of a single factor Heath-Jarrow-Morton model with stochastic volatility," Papers 1108.1688, arXiv.org.
  • Handle: RePEc:arx:papers:1108.1688
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1108.1688
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter H. Ritchken & L. Sankarasubramanian, 1992. "On Markovian representations of the term structure," Working Papers (Old Series) 9214, Federal Reserve Bank of Cleveland.
    2. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    3. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    4. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(3), pages 423-440, September.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Carl Chiarella & Oh Kwon, 2003. "Finite Dimensional Affine Realisations of HJM Models in Terms of Forward Rates and Yields," Review of Derivatives Research, Springer, vol. 6(2), pages 129-155, May.
    7. Carl Chiarella & Oh-Kang Kwon, 2000. "A Complete Stochastic Volatility Model in the HJM Framework," Research Paper Series 43, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. Peter Cotton & Jean‐Pierre Fouque & George Papanicolaou & Ronnie Sircar, 2004. "Stochastic Volatility Corrections for Interest Rate Derivatives," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 173-200, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    3. Stefan Tappe, 2019. "An alternative approach on the existence of affine realizations for HJM term structure models," Papers 1907.03256, arXiv.org.
    4. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    5. Eckhard Platen & Stefan Tappe, 2011. "Affine Realizations for Levy Driven Interest Rate Models with Real-World Forward Rate Dynamics," Research Paper Series 289, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Stefan Tappe, 2019. "Existence of affine realizations for L\'evy term structure models," Papers 1907.02363, arXiv.org.
    7. Damir Filipovi'c & Stefan Tappe, 2019. "Existence of L\'evy term structure models," Papers 1907.03561, arXiv.org.
    8. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    9. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    10. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    11. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    13. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    14. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    15. Baaquie, Belal E. & Pan, Tang, 2011. "Simulation of coupon bond European and barrier options in quantum finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 263-289.
    16. Carl Chiarella & Oh-Kang Kwon, 2000. "A Class of Heath-Jarrow-Morton Term Structure Models with Stochastic Volatility," Research Paper Series 34, Quantitative Finance Research Centre, University of Technology, Sydney.
    17. Gapeev Pavel V. & Küchler Uwe, 2006. "On Markovian short rates in term structure models driven by jump-diffusion processes," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 255-271, December.
    18. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, March.
    19. Jing Yuan & Yan Peng & Zongwu Cai & Zhengyi Zhang, 2021. "A Quantitative Evaluation to Interest Rate Marketization Reform in China," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202122, University of Kansas, Department of Economics.
    20. Chiarella, Carl & Hung, Hing & T, Thuy-Duong, 2009. "The volatility structure of the fixed income market under the HJM framework: A nonlinear filtering approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2075-2088, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1108.1688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.